Software Integration Challenges

Whitepaper Presentation
Collegeville Workshop, July 21-23, 2020

Todd Gamblin
Advanced Technology Office
Livermore Computing

LLNL-PRES-811108 B Lawrence Livermore

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE- i
AC52-07NA27344. Lawrence Livermore National Security, LLC National Laboratory

We build codes from hundreds of small, complex pieces

An essential problem | don’t know how to solve: Just when we’re starting to solve the problem of how to create software
using reusable parts, it founders on the nuts-and-bolts problems outside the software itself.

P. DuBois & T. Epperly. Why Johnny Can’t Build. Scientific Programming. Sep/Oct 2003.

= Component-based software development dates back to the 60’s J e
— M.D. Mcllroy, Mass Produced Software Components. NATO SE Conf., 1968 z ~
= Pros are well known:
— Teams can and must reuse each others’ work . '
— Teams write less code, meet deliverables faster Build-time incompatibility; fail fast

= Cons:
— Teams must ensure that components work together
— Integration burden increases with each additional library
— Integration must be repeated with each update to components

Managing changes over time is becoming intractable Appears to work; subtle errors later

We must automate more of the software integration process.

Lawrence Livermore National Laboratory NUYSE

LLNL-PRES-811108 National Nuclear Security Administration

Supporting accelerated architectures will require more
components, and great complexity in the software stack

MFEM Finite Element (pre) Exascale Machines

Library

Kernels Backends Hardware

{! Perlmutter . *

CUDA
Memory

HIP

OCCA

2O R
pewer U INTHER
0 =~

v ——

libCEED

RAJA

o Added for cross-platform

GPU support

= MFEM has redesigned memory management and added 6 libraries
— MFEM has not yet started to support the Intel GPUs on Aurora

= Exascale machines will have a new, rapidly changing set of libraries, compilers, and language runtimes

Lawrence Livermore National Laboratory N A‘S@’i 3

LLNL-PRES-811108 National Nuclear Security Adminis

A 2015 LLNL Strategic Planning exercise embraced modularity as a
fundamental approach to code development

Old Model New Model —
Physics packages, CLIES ucee M y
From recent WSC/CP including hydro, are — e
presentation reflecting on developed as modular Cotehe Hd‘w o
increased code modularly as capabilities #
a major pillar of the 2015 o —

next-gen code strategy.

-
/Siam uunnl!hl‘ » ""'
" i e ~~_(in-core datastore) | & “‘y"“””i.’"w ™, AXOM Toolkit
was recentiy revisitea an ! \Ql e .‘,; S .
Confirmed as the right (“Mesh-awaBr:elf’zpartI;:iescription) !V‘ ; <§ IF‘)T:g(\j“ljzi ?:S
approach, despite Coneut o ™ 3 7 a1, :Z,,», " infrastructure
. o . n-core data - , I
challenges with integration. Q schema) ec) ¥ 1,.m...w.
Quest & Primal Mint & SLAM
* computational geometry SLIC & Lumberjack * mesh data model
surface queries, unified parallel logging + abstractions for integrating meshes
ECP, E4S, xSDK, many other « point containment, . message filtering for multi- and numerical algs
proj ects are also embracin g * spatial acceleration structures physics applications

modularity!
Courtesy: Chris Clouse, WSC Program Lead for Computational Physics

Lawrence Livermore National Laboratory N Sﬁf_a; 4

LLNL-PRES-811108

National Nuclear Security Administration

RADIUSS is integrating software components from across the lab

into a universal software stack

LLNL Software Portal

RADIUSS News AboL

LLNL's RADIUSS project—Rapid Application Development via an Institutional Universal Software Stack—

“... Scientific software is increasingly becoming core
infrastructure for the lab, and must be treated as such...”

APP INFRASTRUCTURE

“Develop strategy to deploy a common base of foundational

scientific software with opt-in adoption from lab applications” iy

“We're leveraging years of major ASC (and other)
investments”

raclius%

MATH & PHYSICS LIBRARIES

= Component usage is on the rise!

— Projects like Lido (ENG) are adopting Axom
(with some integration difficulties)

45 samRal 135% O
o hypre 112% ©
ese- xbraid 0% O

Lawrence Livermore National Laboratory
LLNL-PRES-811108

2

BUILD TOOLS

Automate and simplify complex
dependencies and deployments

0 spack 1575 % ©
OIT bt 115% ©
<_> shroud 2k 0

‘s

PERFORMANCE & WORKFLOW

Manage and scale complex workflows,
tracking, and data collection

- Caliper 128% O
f flux-core 59% ©

<> maestrowf 53k O

re

'&,g Spindle ax 0
f flux-sched 204 O

aims to broaden usage across LLNL and the open source community of a set of libraries and tools
used for HPC scientific application development.

%

DATA MANAGEMENT & VIZ

Manage visualizations with robust features
and configurable analysis

O
. visit
Q glvis

2 condui

1 ascent
<> ser

it

289% O

103% ©

Bk O

64k O

56k O

ek 0

Build integration complexity has caused massive delays in the
MuMMI developer workflow

= LLNL's MuMMII code is a used to model drugs,
including cancers and, more recently, COVID-19

= When standing up Sierra, the team was at the mercy of constant system updates

Determine Fix Application
system library Build code bugs/configs Productivity! OS update pt?reaks
configurations based on errors

= We use system dependencies (MPI, compilers) to:
— get the best performance from the machine.
— avoid long build times

Di Natale et al. A Massively Parallel Infrastructure for Adaptive Multiscale Simulations: Modeling RAS Initiation Pathway for Cancer. In Supercomputing 2019 (SC’19). 2019. Best paper.

Lawrence Livermore National Laboratory N A‘ S{g‘.; 6

LLNL-PRES-811108 National Nuclear Administr

opengl:

. . . paths: ~ 100 lines, 20 pinned system dependencies
Build Integratl ot configured per machine ©

MuMMI dev e

openglu@l.3.1: /usr

buildable: False

Lock down which MPI we are using
mvapich2:
paths:

| LLN L’S MUMMI # clang mvapich2

mvapich2@2.3%clang@9.0.0 arch=1linux-rhel7-ivybridge: /usr/tce/packages/mvapich2/mvapich2-2.3-clang-9.0.0

iﬂC'Uding CanC # gcc mvapich2

mvapich2@2.3%gcc@8.1.0 arch=linux-rhel7-ivybridge: /usr/tce/packages/mvapich2/mvapich2-2.3-gcc-8.1.0

Wh t d- # intel mvapich2
en S an I mvapich2@2.3%intel@19.0.4 arch=linux-rhel7-ivybridge: /usr/tce/packages/mvapich2/mvapich2-2.3-intel-19.0.4
buildable:

False

Determine Fix
system library Build code bugs/configs Productivity! OS update
configurations based on errors

| S

= We use system dependencies (MPI, compilers) to:
— get the best performance from the machine.
— avoid long build times

Application
breaks

Di Natale et al. A Massively Parallel Infrastructure for Adaptive Multiscale Simulations: Modeling RAS Initiation Pathway for Cancer. In Supercomputing 2019 (SC’19). 2019. Best paper.

Lawrence Livermore National Laboratory NYSE 7

LLNL-PRES-811108

Transitive dependency requirements can cause cascading issues

eras
py-scikit-tearn L [(py-ndanalysis-mummi l py-theano py-matplotlib
= — —~ o
L /(P.,.ﬁ‘ == : N\
) cyg o)X) [e (] o] T
\ A / pﬁrﬁk 7~ 7 T E— \ Z—1 AN I
DDDDDD ‘p_('numm py-decorator py-msgpack py-keras-preprocessing py-keras-applications 2\ py-six = py-setuptools-scm py-kiwisolver Ppy-pyparsing
—— N—— S ——
—_——— E— ————— - e ——— e
~ N ~ —— — openblas]

m=———————— a7\

= Team “just” needed a new version of Keras
— which needed a new version of Theano
— which needed a new version of Numpy
— which needed a newer version of OpenBLAS
— But the team was using the system OpenBLAS, which was too old
— Team had to build several versions of OpenBLAS before they found

mummi

[py—mdanalysis—mummi] [py—scik{t—learn] py-keras

one compatible with all other packages in the DAG ZADN
— Then had to rebuild the entire stack for ABI compatibility I B (o (o) \(porimmromens) | (rvemoions)) (R
. . . /’
= This particular issue consumed 36 person hours ‘
= Frequent OS updates causing ABI incompatibilities between Flux, PMI,
and the system MPI cost hundreds of person hours
Lawrence Livermore National Laboratory N A‘S‘f—% 8

National Nuclear Security Administration

Even outside of HPC, dependencies are the most frequent cause
of build errors and software release delays

Types of errors in Factors perceived to cause release delays
26.6 million builds at Google among 491 developers at ING
dependencies
100% Infrastructure
90% | testing . .
o 80% generel fesThg = Developers avoid updates to avoid
g security testing
G 0% procedure MEEG—— problems with dependencies,
5 60% |
bugs .
5 50% - scheduling EEE— Ieadlng to:
o % |) . oo,
g - requirements M— — Security vulnerabilities
2 30% Java unaligned priorities T— Lack of f
a 20% | — quality assurance T — LaCK OT perrormance
b a [] - - code review =W — Stagnation as upgrades become
0% A T . []
lacki .
& <© & NS TEROHIEES harder and harder over time
éé Qvé D poor system design O Non-rapid Releases
é(/ miscommunication B ® Rapid Releases
Category code integration i
[I T I]
“our study clearly shows that better tools to resolve 0 ° 10 19 20
dependency errors have the greatest potential payoff” Percentage of Responses
Survey of 26.6M builds by 18K developers at Google. Survey of 491 individuals from 691 teams at ING.
Seo et al., Programmers’ Build Errors: A Case Study (at Kula et al., Releasing fast and slow: an exploratory case
Google). ICSE 2014. study at ING. ESEC/SIGSOFT FSE 2019.
Lawrence Livermore National Laboratory N A‘Sﬁf_@j

LLNL-PRES-811108 National Nuclear Security Administration

Axom, Serac, xSDK, and E4S teams have similar issues with

managing configuration complexity

= Teams really like to lock versions down for testing:
— Axom team tests on several systems and pins about 20
package versions to consistent (at the time) values
— Serac team pins more system versions than this
— XSDK and E4S stacks from ECP pin specific versions for each
package

= Incompatibilities arise and builds fail in one or both
of two ways:

1. Spack upgrade leads to failure because new versions and
options enter the Spack repository that are incompatible

2. OS upgrades at a local site change local versions
underneath a package

= |nevitably, this version locking effort is spent over
and over again for subsequent releases

xSDK

~21 core libraries
~70 total packages

Pinned versions and options from xSDK

Lawrence Livermore National Laboratory
LLNL-PRES-811108

NYSE ©
Security Administration

National Nuciear

Three main ways to deal with dependencies have emerged
in the past 10-20 years

Bundled Distribution Semantic Versioning Live at Head

Linux distributions (Red Hat, Debian) Spack Google, Facebook, Twitter
E4S, xSDK, Anaconda NPM, Cargo, Go
Spack with locked versions Most language dependency managers
Curate a large set of mutually compatible Use uniform version convention, Everything in one repository,
dependencies Solve for compatible set Developers test changes with all dependents
Stability (if software is included) Frequent updates Frequent updates
Only relies on local information Stability, consistency
Works in theory All changes tested
Infrequent updates Versions are coarse Doesn’t scale beyond a single organization
High packaging/curation effort Developers over-constrain/over-promise High computational cost of testing
Lack of flexibility Errors start to dominate at scale Lack of flexibility (typically just one target env.)

= All of the approaches have serious drawbacks

= Need a way to guarantee stability, frequent updates, and version/config flexibility

Taxonomy c/o T. Winters et al. Software Engineering at Google. 2020.

Lawrence Livermore National Laboratory N A‘ ‘ég‘»j‘ 11

LLNL-PRES-811108 National Nuclear Security Administration

The fundamental problem in integration workflows is
lack of compatibility information

V4 .
In workflows we’ve seen so far: MuMMI .

1. No information on how system libs were built

2. Build repeatedly to find compatible libraries I

3. Hard constraints (pinned versions, etc.) hide
Y | others

information and limit choice
xSDK

Each team ends up curating its own configuration
with baked-in, incompatible assumptions

Community
Package
Repository

If all projects add restricted versions,
conflicts will eventually arise that prevent
all packages from building.

We need a way to reuse package builds among different communities of developers
‘ Lawrence Livermore National Laboratory NYSE ©

RES-811108

Package managers do not model software at sufficient granularity

Current model is coarse Complete model represents how changes affect code
{ .)
. A version vl
[A version v1 } ,) j(t1)
flt1) lg(t1, t2)
v C++ runtime v k(t1) — ti . 4
[B version v2 } version v4 { B version v2, defines t2 runtime version v
defines t1
(not modeled))
! lh(ﬁ) li(tl, t3)
C i 3 I(t1
PRI L C version v3, defines t3 J (t1)
= Need to model libraries at call = We need to model runtime libraries = Need to model changes in the graph
granularity: behind compilers — “If C changes, what needs to be
— Entry calls — C++, OpenMP, glibc rebuilt?”
— Exit calls — GPU runtimes — We will model semantics of interfaces
— Data type definitions & usage — “If h(t3) changes, is B still correct?

This model allows us to reason about compatibility, so we can find usable packages

Lawrence Livermore National Laboratory N "Sﬁf_g;j 13

LLNL-PRES-811108 National Nuclear Security Adminis:

We need better package solvers using sound information

Human-generated constraints Compatibility Models
Recall: package managers produce valid

but not sound graphs.
— Compatibility models give us soundness

flt1) g(t1, t2)

\ 4 \ 4

{ B version v2, defines t2]

h(t3) i(t1, t3)

Q " "

Solver

Can generate entry/exit ABI models using
binary analysis (ground truth)

Solve not on the coarse version model but on true
compatibility
— Solve for what will work instead of what humans say

Past 10-20 years have brought enormous improvements

in solver technology
— CDCL algorithms

— Optimizing SMT and ASP solvers Resolved Graph

Time is right to attack packaging with better solving

Lawrence Livermore National Laboratory N A‘ Sk{_a; 14

LLNL-PRES-811108 National Nuclear Security Administration

These techniques would enable much easier software reuse
across project and community boundaries

1. When OS updates happen underneath a stack:

— Know what changed by examining the binaries’” ABI
— Identify what in the stack is no longer compatible
— Rebuild compatible configurations

2. When user requirements change (e.g., due to a new version):
— Know which packages need to change to meet the new requirements
— ldentify existing binaries (system or packaged) that satisfy the requirements
— Install binaries or rebuild as necessary

3. When information is not available:
— Extrapolate what and how to build based on past, similar builds

We will enable binary code reuse to reduce iteration in developer workflows

‘ Lawrence Livermore National Laboratory NUYSE s

LLNL-PRES-811108 National Nuclear Security Administration

B Lawrence Livermore
National Laboratory

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Semantic versioning is the de-facto standard for conveying
compatibility information

Major Versionw > I 2 ;
Increment only when changes break compatibility. J ® o
T A

[Minor Versionw

Increment for backward-compatible added functionalityJ

Patch Version
Increment for backward-compatible bugfixes.

= Pitfalls:
— Applies to the whole package, but packages may only depend on a subset of functions
— May over-promise: packages may break despite developers’ intentions
— May over-constrain: pinned dependency versions are common but lead to false unsatisfiable cases

= Relies on developers to specify versions correctly

— Relies on broad community participation https://semver.org/

Lawrence Livermore National Laboratory N A‘Sﬁf_g;j 17
Security.

LLNL-PRES-811108

National Nuciear Administration

https://semver.org/

Humans do not accurately specify version information

Rust (Cargo) NPM (JavaScript) PHP (Packagist) Ruby (Gems)

gl.o

AEE

3

5 0.6 I compliant

% [permissive

$ 0.4 MW restrictive

% 0.2

Q.

o

2 0.0

2013 2014 2015 2016 2017 2013 2014 2015 2016 2017 2013 2014 2015 2016 2017 2013 2014 2015 2016 2017

= Plots show version restrictions across 4 package ecosystems.
— Permissive leaves room for lots of room for incorrect builds
— Restrictive rules out builds that would work
— Non-specialized (white) leaves everything open (no constraints)

= HPC ecosystem is most like Ruby (right) — dated, with many permissive constraints
— Most projects don’t use semantic versioning and won’t switch
— Likelihood of build errors is very high

Decan et al. What Do Package Dependencies Tell Us About Semantic Versioning? IEEE Trans. Software Eng. May 2019.

Lawrence Livermore National Laboratory N A‘S‘({‘&g 18

LLNL-PRES-811108 National Nuclear Security Administration

Even our proprietary codes rely on many open source libraries

ARES and its Dependencies e —

uuuuu

%ss‘l.-\-r}‘-‘*‘\\, = & \‘ RN
T i R NN
= , #’;l‘gz'eaa.{"‘vﬁ-x\~

)% —— AN
NS E e S
A

LLNL-developed H External Open Source

= Since 2014, number of libraries has grown from ~60 to > 100

— Added complexity is from modularization and libraries to support GPUs and accelerators
= Team constantly struggles with updates, improvements, and feature additions:

— OS updates on LANL Trinitite system 1 day — 1 week per update

— OS updates at LLNL similar (sometimes give up on outdated machines)

— Python and other OSS updates (many transitive upgrades required) days — 1 week

— CUDA updates at LLNL days

— Fortran ABI Issues with mixed compilers days

— Using Numpy with XL Fortran weeks of LC Spack developer time (Becker)

Lawrence Livermore National Laboratory N A‘Sﬁfég 19

LLNL-PRES-811108 National Nuclear Security Administration

