
Argonne Leadership Computing Facility1

The Many Faces of the 
Productivity Challenge in 

Scientific Software

Hal Finkel - Collegeville 2020

Argonne Leadership Computing Facility1



Argonne Leadership Computing Facility2

Productivity Affects All Phases of Software Development...



Argonne Leadership Computing Facility3

● Searching for information on how similar problems were solved in the past.

● Recommendation: We need better ways to search both scientific literature and 
scientific source code. 

● Assessment of the capabilities needed for the software.

● Recommendation: We need more-comprehensive software metadata capturing not 
only build dependencies and licensing, but information on testing, development 
practices, anticipated funding stability, and planned hardware-support timelines.

Concept → Design (Planning)



Argonne Leadership Computing Facility4

● Translating the planned design into an actual implementation accounts for a 
significant portion of the overall software-development effort.

● Recommendation: We need more-intelligent programming tools to assist with the 
generation of code for scientific applications.

● One important aspect of the programmer-productivity challenge is 
compilation/iteration time.

● Recommendation: We need improved software analysis and compilation turn-
around time in order to increase developer productivity. In addition, we need better 
tools to help programmers of scientific software create and maintain tests.

Design → Implementation (Authorship)



Argonne Leadership Computing Facility5

● An implementation cannot be considered complete until it has been shown to be 
correct. This includes both verification and validation, and critically, both processes 
are difficult.

● Recommendation: Debugging tools, especially high-performance, instrumentation-
based tools, should be enhanced to work at large scale in HPC environments, and 
on large code bases.

Implementation → Correct Implementation (Debugging)



Argonne Leadership Computing Facility6

● The transformation of a working piece of software to increase its runtime performance 
is often time consuming and requires specialized skills.

● Recommendation: Better tools need to be developed to help developers model 
ideal performance and scaling on platforms of interest such that these models can 
be compared to observed performance. Compilers need to be improved to generate 
better code even in the face of complex abstraction layers.

Implementation → High-Performance Implementation (Tuning)



Argonne Leadership Computing Facility7

● Integration of scientific software into a larger workflow can be challenging for several 
reasons. Often, the integration method has a significant affect on performance.

● Recommendation: Work needs to continue on tools that generate high-performance 
interfaces between components written in a variety of relevant programming 
languages.

● Integration of scientific software can also provide difficult when the different 
components lack an ability to coordinate their use of shared resources.

● Recommendation: Runtime systems, and operating systems, need enhancements 
to ensure that application components can communicate to collectively manage 
system resources.

Isolated Implementation → Implementation As Part of a Larger Project 
(Integration)



Argonne Leadership Computing Facility8

● It is critical to the scientific process that the results of running scientific applications 
are reproducible (at least for some period of time).

● Recommendation: Programming environments need to make it easy to collect, 
statically and dynamically, dependency, configuration, and version information for all 
applications.

Implementation → Reproducible Results (Provenance)



Argonne Leadership Computing Facility9

● A lot of developer time is sunk into maintenance tasks: Updating code to work with 
newer versions of programming environments and libraries, comply with updated 
coding guidelines, handle new usage scenarios, and so on.

● Recommendation: Better tooling needs to be developed in order to handle language 
upgrades and perform API migration.

Implementation → Updated Implementation (Maintenance)



Argonne Leadership Computing Facility10

● An important consideration for all aspects of the productivity challenge for scientific 
applications is the reality that training is a challenge.

● Recommendation: It is important that all capabilities created to address productivity 
challenges place an emphasis on being easy to learn (or, at least, it should be easy 
to get started).

Initial Implementation Developers → Replacement/Additional Implementation 
Developers (Training)



Argonne Leadership Computing Facility11

● No particular implementation will remain useful for ever. Eventually, new 
requirements will overtake the ability of the software to be adapted by mutation, and a 
new implementation must be created.

● Recommendation: Systems must be developed, perhaps making use of ML 
technology, to make it easy to keep both detailed and high-level documentation in 
sync with the code and complete.

Implementation → The Next Implementation (Knowledge Transfer)



Argonne Leadership Computing Facility12

● When we think about programming productivity, we often think only about the process 
of writing code, after the design has been decided, ending once the code meets 
some definition of "working."

● Don't do this: We need to consider the entire software life cycle!

● There are investments we can make now to improve productivity across the entire life 
cycle of scientific software.

Conclusions...



Argonne Leadership Computing Facility13

Acknowledgments

➔ ALCF, ANL, and DOE
➔ ALCF is supported by DOE/SC under contract DE-AC02-06CH11357

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two 
U.S. Department of Energy organizations (Office of Science and the National Nuclear Security Administration) 
responsible for the planning and preparation of a capable exascale ecosystem, including software, 
applications, hardware, advanced system engineering, and early testbed platforms, in support of the nation’s 
exascale computing imperative.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

