Towards a Data-Driven Understanding of
Cross-team Collaboration

Han Yong Wunrow
Sandia National Laboratories
nhwunro@sandia.gov

Index Terms—scientific software teams; developer networks

I. INTRODUCTION

Scientific software is increasingly critical to the practice
of science, and as the demand for that software has grown,
so too has the need for more effective teaming and collab-
oration. While historically most scientific software has been
the product of individuals and small teams, scientific software
development today is increasingly large-scale, open-source,
community-driven, multi-disciplinary, and multi-institutional.

The question of how research teams function and how we
can empower them represents an exciting frontier for soft-
ware engineering research. Scientific software developer teams
would benefit from better and more tailored tools, techniques,
and methodologies to enable more effective collaboration.
However, as Dennehy and Conboy observe, the culture and
context of a software project are “critical determinants of
software development success” and that “a method, practice,
or tool cannot be studied in isolation” [1]. That is, through
a better understanding of current teaming and collaboration
practices, we can arrive at better ways of working and — by
extension — do better science.

In this paper, we explore how data-driven modeling of large-
scale scientific software collaborations can inform the broader
conversation on what research teams need to be successful.
Ongoing work on software repository mining and network
science techniques provide us with the necessary tools to
extract and analyze team dynamics [2], [3].

II. BACKGROUND

Software engineering research, also known as software sci-
ence, is the study of software systems and their development,
operation, and maintenance. As a branch of computer science,
software science applies a sociotechnical lens to help model,
understand, and predict the factors that lead to high-quality
software systems. In recent decades, the move towards open-
source, community software has enabled software scientists to
rigorously study software development practices at scale. By
combining software repository mining techniques with insights
from data science, network science, and machine learning,
researchers can derive actionable insights regarding software
development team practices.

While the social networks and collaboration habits of scien-
tists have been the subject of decades of research [4], scientific

Reed Milewicz
Sandia National Laboratories
rmilewi@sandia.gov

Elaine M. Raybourn
Sandia National Laboratories
emraybo@sandia.gov

software developers have long been understudied in the context
of empirical software engineering. This is because, historically,
scientific software development has often been a private affair.
However, with the shift towards open science and community
software hosted on open-source platforms, we now have access
to rich sources of fine-grained data on scientific software
development; questions about team practices and collaboration
behaviors are finally amenable to data-driven analysis.

III. NETWORK SCIENCE

Network science provides a logical framework to model the
interactions between teams, where nodes represent contribu-
tors to a project and edges represent some relationship between
contributors.

However, to build a rigorous foundation for research in
this space, we must carefully define what we mean by a
scientific software team and its contributors. Thompson et al.
define a team as “a group of people who are interdependent
with respect to information, resources, knowledge and skills
and who seek to combine their efforts to achieve a common
goal” [5].

Network science also allows us to analyze and test hy-
potheses about the interdependencies and dynamics of teams.
Previous studies of open-source software projects have used
social networks to characterize the development process and
describe how the structure of these networks can be used
to effectively manage software development projects [6]—[8].
For example, Roach et al. examined the open-source software
development of the Python programming language and found
that network measures proved to be an accurate measure of
contribution by an individual developer within a community.

However, in the context of teams who build and use scien-
tific software, Ramin et al. define contribution as “any activity,
demanding human resources, that adds to the fulfillment of
project goals, by adding value to the developed product or
the (future) effectiveness of the team” [9]. This definition
necessitates the inclusion of roles beyond developers when
analyzing cross-team collaboration.

Therefore, when constructing a contributor social network, it
is important to consider our precise definition of a contributor.
If we form a network solely on changes to repositories (e.g.,
commits, pull requests, merge requests, patches), we may miss
key contributors such as project managers and principal in-
vestigators who may not necessarily actively contribute to the

codebase. Young et al. argue that code as a measure for con-
tribution likely does not capture all contributors and provide
four alternative models of contributor acknowledgment [10].
Additionally, it is important to consider the temporal aspect
of interactions within networks. While two people may have
interacted with the same repository, it may have been several
years apart. In this case, it becomes useful to communicate
with members of software teams to obtain the ground truth of
who is a contributor, the degree to which they contribute, and
when the contributions take place.

The software engineering research community has acknowl-
edged that source lines of code, number of bugs fixed, number
of tasks completed, and hours worked are poor measures of
productivity and contribution value. This is because quantity
solely does not imply software quality or the complexity of the
code [8]. Relevant metrics of the importance of a contribution
could be used instead when defining the edge relationship and
weight in the network.

A recent study showed that analyzing community structure
is the dominant research direction in studies on developer
social networks [11]. Generally, communities are groups of
nodes with a higher probability of being connected to each
other than nodes in other groups [12]. Understanding the
evolution of communities in networks gives us a picture of
which contributors and teams interact with whom and to what
degree.

IV. DISCUSSION

While data-driven approaches promote understanding of
how teams function, basing decisions solely on data is mis-
guided. One major concern is the quality of data being used.
There are certainly methods to reflect the degree of uncertainty
based on the quality of the data; however, teams cannot
accurately measure with poor-quality data. Additionally, it is
best to keep some healthy skepticism when interpreting results
from data-driven approaches. Before accepting claims, it is
best to consult with a subject-matter expert on the particular
topic being investigated. In particular, research on teams would
benefit from the expertise of social scientists who have been
researching teams for decades. Taking these limitations into
account is crucial when interpreting and acting on results from
data-driven approaches.

There is a growing body of evidence that shows collab-
orative teams tend to produce the highest-impact scientific
work [13]. This claim motivates our research objective of
understanding how teams interact with each other. Empirically
studying scientific software team dynamics enables us to
examine current teaming and collaboration patterns and then
develop practices to sustain the health and success of teams.
Specifically, network science methods allow us to identify key
contributors within the network, detect community structures
as projects progress, and uncover complex dependencies be-
tween teams. A network science approach also focuses less
on individual aspects of the project and instead measures the
entire ecosystem in which teams function together, making
this research more generalizable and actionable.

V. CONCLUSION

Leveraging a data-driven approach to analyze scientific
software team ecosystems will help advance the field’s un-
derstanding of large-scale scientific software collaborations
and help develop ways to promote more productive and
sustainable software development. Network science is a well-
suited framework for modeling cross-team collaboration and
will help answer questions on how to best structure teams
together to facilitate collaboration, where key leverage points
within networks of teams are, and what kind of teaming and
collaboration practices lead to increased productivity and risk
mitigation.

VI. ACKNOWLEDGEMENTS

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineer-
ing Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DENA0003525. SAND2021-7356 C.

REFERENCES

[1] D. Dennehy and K. Conboy, “Going with the flow: An activity theory
analysis of flow techniques in software development,” Journal of Systems
and Software, 2016.

[2] A. Santos, M. Souza, J. Oliveira, and E. Figueiredo, “Mining software
repositories to identify library experts,” ACM International Conference
Proceeding Series, no. i, pp. 83-91, 2018.

[31 P. J. Mucha, T. Richardson, K. Macon, M. A. Porter,
and J.-P. Onnela, “Community Structure in Time-Dependent,
Multiscale, and Multiplex Networks,” Science, vol. 328,
no. 5980, pp. 876-878, may 2010. [Online]. Available:
https://www.worldscientific.com/doi/abs/10.1142/50219525903001067
https://www.sciencemag.org/lookup/doi/10.1126/science.1184819

[4] C. Roth, “Socio-semantic frameworks,” Advances in Complex Systems,
vol. 16, no. 04n05, p. 1350013, 2013.

[5] L. L. Thompson and M. Thompson, “Making the team: A guide for
managers,” 2008.

[6] S. Kumar, “Using social network analysis to inform management of
open source software development,” Proceedings of the Annual Hawaii
International Conference on System Sciences, vol. 2015-March, pp.
5154-5163, 2015.

[71 G. Zanella and C. Z. Liu, “A Social Network Perspective on the Success
of Open Source Software: The Case of R Packages,” Proceedings of the
53rd Hawaii International Conference on System Sciences, vol. 3, pp.
471-480, 2020.

[8] C. Roach and R. Menezes, “Using networks to understand the dynamics
of software development,” Communications in Computer and Informa-
tion Science, vol. 116 CCIS, no. January, pp. 119-129, 2011.

[9] F. Ramin, C. Matthies, and R. Teusner, “More than Code: Contributions

in Scrum Software Engineering Teams,” Proceedings - 2020 IEEE/ACM

42nd International Conference on Software Engineering Workshops,

ICSEW 2020, pp. 137-140, 2020.

J.-G. Young, A. Casari, K. McLaughlin, M. Z. Trujillo,

L. Hébert-Dufresne, and J. P. Bagrow, “Which contributions count?

Analysis of attribution in open source,” 2021. [Online]. Available:

http://arxiv.org/abs/2103.11007

S. Herbold, A. Amirfallah, F. Trautsch, and J. Grabowski, “A

systematic mapping study of developer social network research,”

Journal of Systems and Software, vol. 171, p. 110802, 2021. [Online].

Available: https://doi.org/10.1016/j.jss.2020.110802

S. Fortunato and D. Hric, “Community detection in networks: A user

guide,” Physics Reports, vol. 659, pp. 1-44, 2016.

R. R. Schreiber and M. P. Zylka, “Social Network Analysis in Software

Development Projects: A Systematic Literature Review,” pp. 321-362,

mar 2020.

[10]

(11]

[12]

[13]

