
Challenges in Deployability: Scientific Software on Microsoft Windows
B. M. Cowan, Tech-X Corporation

TECH-X CORPORATION

Motivation: Industry participation
• Building a broad base of users and developers for community software is 

important for sustainability
• Industrial—commercial software developer—contribution to community 

software can have significant benefits:
• Can bring developer resources
• Increases adoption of community software: “Success stories” for further 

funding
• Commercial software generally has stricter requirements on robustness and 

usability than academic software—so commercial developers will contribute 
to testing

Needs of commercial software

Commercial scientific software requires not just performance portability, but 
deployability: Software must be able to be easily installed, and perform well, on a 
wide range of customer hardware, without the developer having access to the 
hardware or even knowing its configuration beforehand. As a commercial 
scientific software developer:
• We can’t assume that the customer

• Can build software
• Can install dependencies
• Can manage drivers/system software
• “I don’t have administrator privileges on my computer.” –Magnet engineer at 

national lab partner
• So we have to

• Provide installation in user space via installer or tarball
• Have software perform well on customer machine without access to it
• Support Windows

• That’s where the market is
• HPC users might be big customers
• But there are far more potential users who are engineers with Windows 

boxes on their desks
• Containers/VMs not (currently) deployable enough that we can just ship Linux 

software

Our perspective
• Tech-X develops and markets several commercial scientific software codes

Observations about Windows

Scripting environment
Windows’ native scripting environment is DOS, which is fundamentally different 
from Unix shells
• Paths, command-line argument conventions are different
• Few scientific software developers are conversant in DOS
• But some required Windows development tools adhere to DOS conventions
There are some ways around this:
• Cygwin provides Windows executables that mimic standard Unix equivalents

• Start in bash shell
• Some tools can use Unix or Windows path conventions, and convert 

between them
• Environment variables set from Windows environment and visible in 

Windows programs
• The Windows Subsystem for Linux (WSL) provides a complete Linux 

distribution (e.g. Ubuntu) within Windows 10
• Can run Windows executables from within Linux environment
• But programs not necessarily WSL-aware: For instance, CMake for Linux 

running in WSL assumes Unix-style command-line arguments, even for 
Visual C++ compiler for Windows

Compilers
Compiler must be able to generate Windows code (except for build-only 
dependencies). There are several options:
• Microsoft Visual C/C++ (MSVC)

• Generally lags behind other compilers in support for HPC features (e.g. 
OpenMP), but latest MSVC 2019 is an improvement

• Only supported CUDA host compiler for nvcc on Windows
• Required for GUI code (e.g. Qt)
• Basic command-line arguments don’t conform to conventions of normal 

Unix compilers—so most Linux build tools won’t work, even under WSL
• LLVM Clang

• More Unix-like
• Also has clang-cl executable that uses MSVC command-line argument 

syntax
Build systems
• Modern CMake (target-based dependencies, CUDA-as-language, etc.) works 

really well
• No special cases for Windows needed, even in large mixed C++/CUDA 

code base
• But lots of legacy CMake code out there, and updating is often an all-or-

nothing affair
• Still evolving, especially in CUDA features

• Autotools: Not really an option
• Doesn’t work with MSVC-style command-lines
• On Cygwin, links with Cygwin environment, which is GPL, so can’t be 

linked to commercial software
• MSVC cumbersome in Unix-like environments

• Uses nmake and jom instead of make
• Requires execution of a DOS batch script to set up environment
• We kluge this for our bash-based package management system; also 

needed for Spack

• Application areas (for VSim):
• Antennas; Waveguides
• Microwave devices (e.g. klystrons, traveling-wave tubes)
• Magnetron sputtering; RF-driven plasmas for semiconductor processing
• Optical fibers; Silicon photonics
• Ion thrusters
• Plasma-based particle accelerators

• Adding performance portability with CUDA GPUs and vector instructions on 
CPUs

• Closed-source...
• ...But we use, and contribute to, community software:

• Trilinos: Linear algebra/solvers
• Also SuperLU, HYPRE

• VisIt: Embedded visualization
• HDF5: I/O
• CMake: Build system generator

Why Windows?

• Software provides unique physics and computational capability
• Works on multiple platforms, scales from laptops to supercomputers
• GUI that integrates problem setup, execution, visualization and analysis

Parabolic Dish Antenna 
VSim Example


