

TECH-X CORPORATION Challenges in Deployability: Scientific Software on Microsoft Windows

Motivation: Industry participation

- Building a broad base of users and developers for community software is important for sustainability
- Industrial—commercial software developer—contribution to community software can have significant benefits:
- Can bring developer resources
- · Increases adoption of community software: "Success stories" for further funding
- · Commercial software generally has stricter requirements on robustness and usability than academic software—so commercial developers will contribute to testing

Needs of commercial software

Commercial scientific software requires not just performance portability, but deployability: Software must be able to be easily installed, and perform well, on a wide range of customer hardware, without the developer having access to the hardware or even knowing its configuration beforehand. As a commercial scientific software developer:

- We can't assume that the customer
- Can build software
- Can install dependencies
- Can manage drivers/system software
- "I don't have administrator privileges on my computer." –Magnet engineer at national lab partner
- So we have to
- Provide installation in user space via installer or tarball
- Have software perform well on customer machine without access to it
- Support Windows

Why Windows?

- That's where the market is
- HPC users might be big customers
- But there are far more potential users who are engineers with Windows boxes on their desks
- Containers/VMs not (currently) deployable enough that we can just ship Linux software

B. M. Cowan, Tech-X Corporation

dishAntenna.sdf	dishAntenna.pre	dishAntenna.	in		
Simulation		D		3)	,y,z (z,r,phi)
Description		20		ž	
> Constants				R	
 Parameters 					
OMEGA				ase	Pa
WAVELEN	GTH			ta l	
XLEN				õ	
YLEN					V 3
ZLEN					
DL					
XCELLS					
YCELLS					
ZCELLS					
Basic Settings					
Functions					
 SpaceTimeFul 	nctions				
Jx					
Jz					
✓ Materials					
PEC					
✓ Geometries					
CSG					
✓ ✓ dishAr	ntennaGeom				
> 🔽 Dis	sh Antenna				
> Grids					
 Field Dynamic 	cs.				
> Fields					
✓ FieldBoun	daryConditions				
pecLo	werY				
openL	owerX				
openU	JoperX				
openl	JoperY				
openL	owerZ				
openl	Inner7				
✓ CurrentDi	stributions				
dis	stributedCurrent0				
Histories					
Thistories					
	F	Remove	Add		
Property Value					
shor Dish A	Intenna		1		
desc A dish	antenna with a cur	rent source.			
long A Dish	Antenna is a parab	olic mirror with	n a receiv		
image					
thu dishAr	ntennaTn.png				

- Application areas (for VSim):
- Antennas; Waveguides

- Optical fibers; Silicon photonics
- Ion thrusters
- Plasma-based particle accelerators
- CPUs Closed-source...
- Trilinos: Linear algebra/solvers
 - Also SuperLU, HYPRE
- Vislt: Embedded visualization
- HDF5: I/O
- CMake: Build system generator

Our perspective

Tech-X develops and markets several commercial scientific software codes

- VSim Electromagnetics and Plasma Simulation
- **RSim** Radiation Transport Modeling
- USim Fluid Plasma Modeling
- **PSim** Complex Block Copolymer Modeling

Software provides unique physics and computational capability Works on multiple platforms, scales from laptops to supercomputers GUI that integrates problem setup, execution, visualization and analysis

• Microwave devices (e.g. klystrons, traveling-wave tubes)

Magnetron sputtering; RF-driven plasmas for semiconductor processing

Adding performance portability with CUDA GPUs and vector instructions on

...But we use, and contribute to, community software:

Observations about Windows

Scripting environment

Windows' native scripting environment is DOS, which is fundamentally different from Unix shells

- Paths, command-line argument conventions are different
- Few scientific software developers are conversant in DOS

But some required Windows development tools adhere to DOS conventions There are some ways around this:

- Cygwin provides Windows executables that mimic standard Unix equivalents Start in bash shell
- Some tools can use Unix or Windows path conventions, and convert between them
- Environment variables set from Windows environment and visible in Windows programs
- The Windows Subsystem for Linux (WSL) provides a complete Linux distribution (e.g. Ubuntu) within Windows 10
- Can run Windows executables from within Linux environment
- But programs not necessarily WSL-aware: For instance, CMake for Linux running in WSL assumes Unix-style command-line arguments, even for Visual C++ compiler for Windows

Compilers

Compiler must be able to generate Windows code (except for build-only dependencies). There are several options:

- Microsoft Visual C/C++ (MSVC)
- Generally lags behind other compilers in support for HPC features (e.g. OpenMP), but latest MSVC 2019 is an improvement
- Only supported CUDA host compiler for nvcc on Windows
- Required for GUI code (e.g. Qt)
- Basic command-line arguments don't conform to conventions of normal Unix compilers—so most Linux build tools won't work, even under WSL
- LLVM Clang More Unix-like
- Also has clang-cl executable that uses MSVC command-line argument syntax

Build systems

- Modern CMake (target-based dependencies, CUDA-as-language, etc.) works really well
- No special cases for Windows needed, even in large mixed C++/CUDA code base
- But lots of legacy CMake code out there, and updating is often an all-ornothing affair
- Still evolving, especially in CUDA features
- Autotools: Not really an option
- Doesn't work with MSVC-style command-lines
- On Cygwin, links with Cygwin environment, which is GPL, so can't be linked to commercial software
- MSVC cumbersome in Unix-like environments
- Uses nmake and jom instead of make
- Requires execution of a DOS batch script to set up environment
- We kluge this for our bash-based package management system; also needed for Spack

