
Sandia National Laboratories is a multimission

laboratory managed and operated by National

Technology & Engineering Solutions of Sandia,

LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of

Energy’s National Nuclear Security Administration

under contract DE-NA0003525.

Case Study: Debugging Other
People’s Libraries via PRELOAD

C h r i s S i e f e r t a n d J a m e s E l l i o t t

1

S a n d i a N a t i o na l L a b o r a to r i e s

S p e c i a l t h a n k s t o C h r i s t i a n Tr o t t

SAND2020-5956 C

Motivation: What in the World is that Library doing?

When using libraries it is often hard to understand what they are doing

▪ MPI makes this more complicated!

▪ CUDA even more so!

Profiler output (X happened at time T) are insufficient

▪ Linear graph is impossible to follow for long enough calculation.

▪ No stack information (e.g. the code called MPI_Barrier, but who did that??).

Goal: Stack-based output with a special attention to MPI and Cuda.

Method: Use of LD_PRELOAD

Case Study: Understanding how the Kokkos::deep_copy() calls handle device
synchronization.

2

Case Study: Kokkos::deep_copy() on NVIDIA GPUs

For this discussion, Kokkos::deep_copy() does one of two things

▪ GPU/CPU: Copy data between GPU and CPU memory.

▪ GPU/GPU: Copies data between two GPU buffers.

These two tasks imply different synch semantics

▪ GPU-to-CPU: We need to wait until Cuda streams are done working before copying to CPU
memory (e.g. call cudaDeviceSynchronize()).

▪ GPU-to-GPU: For single stream operation, this should just queue up as a regular kernel
launch. No sync needed.

Question: Does Kokkos actually do that correctly? How can we tell?

Hand inspection won’t cut it (Kokkos is too complicated). We could add lots of
printf ’s… but there’s a better way.

3

Method: LD_PRELOAD

We use a PRELOAD mechanism to intercept MPI and Cuda library calls and dlsym
to call the “real” function.

Use a Teuchos::TimeMonitor to wrap the calls.

This integrates with Teuchos::StackedTimers which give us stack-based output,
across MPI ranks.

Caveats: Requires Shared builds.

Goal: Release this tool as part of Trilinos.

4

Method: LD_PRELOAD … How does it work?

A very common R&D problem is having a binary and wanting to understand what
that binary is doing

◦ Having access to the original source is not guaranteed, and even if you do, you may not
know what hacks/edits/adulterations went into it.

◦ If you do have the source, build times can be prohibitive, and you run the risk of building
in a manner different from the original developer.

Solution:

◦ Use shared libraries and inject.

5

App code

void myfunc() {

MPI_barrier(comm);

}

MPI Library

int MPI_Barrier(MPI_Comm* c) {

…

}

Method: LD_PRELOAD … How does it work?

A very common R&D problem is having a binary and wanting to understand what
that binary is doing

◦ Having access to the original source is not guaranteed, and even if you do, you may not
know what hacks/edits/adulterations went into it.

◦ If you do have the source, build times can be prohibitive, and you run the risk of building
in a manner different from the original developer.

Solution:

◦ Use shared libraries and inject.

6

App code

void myfunc() {

MPI_barrier(comm);

}

Our Tool

int MPI_Barrier(MPI_Comm * c) {

auto rb = dlsym(RTLD_NEXT,“MPI_Barrier”);

return rb(c);

}

MPI Library

int MPI_Barrier(MPI_Comm* c) {

…

}

Caveat: MPI can be done via standard-

specified MPI profiler hooks, rather than

dlsym (presuming your MPI is standard

compliant).

Kokkos::deep_copy() Test Code

{ // This uses the GPU-to-CPU style semantic

Teuchos::TimeMonitor timer2(*Teuchos::TimeMonitor::getNewTimer("deep_copy(v2,v1) x3"));

Kokkos::deep_copy(v2,v1);

Kokkos::deep_copy(v2,v1);

Kokkos::deep_copy(v2,v1);

}

{ // This uses the GPU-to-GPU style semantic

Teuchos::TimeMonitor timer2(*Teuchos::TimeMonitor::getNewTimer("deep_copy(space,v3,v1) x3"));

Kokkos::deep_copy(MySpace,v3,v1);

Kokkos::deep_copy(MySpace,v3,v1);

Kokkos::deep_copy(MySpace,v3,v1);

}

7

Test Code Output

Driver: 0 [1]

| deep_copy(v2,v1) x3: 0.000599708 - 7.44129% [1]

| | cudaDeviceSynchronize: 6.5433e-05 - 10.9108% [6]

| | cudaMemcpy: 6.8193e-05 - 11.371% [3]

| | Remainder: 0.000466082 - 77.7182%

| deep_copy(space,v3,v1) x3: 3.9182e-05 - 0.486178% [1]

| | cudaMemcpyAsync: 2.9618e-05 - 75.5908% [3]

| | Remainder: 9.564e-06 - 24.4092%

| Remainder: -0.00805919

8

Results for Kokkos 3.1. Kokkos 3.0 didn’t do this right and this tool helped us expose the issue.

{ // This uses the GPU-to-CPU style semantic

// deep_copy(v2,v1) timer

Kokkos::deep_copy(v2,v1);

Kokkos::deep_copy(v2,v1);

Kokkos::deep_copy(v2,v1);

}

{ // This uses the GPU-to-GPU style semantic

// deep_copy(space,v3,v1) timer

Kokkos::deep_copy(MySpace,v3,v1);

Kokkos::deep_copy(MySpace,v3,v1);

Kokkos::deep_copy(MySpace,v3,v1);

}

Conclusions

Used existing profiler API (Teuchos Timers)

▪ Developers familiar usage and standard output.

Intercept tools developed independent of app profiled

▪ Went from Trilinos test to Kokkos mini-app (previous slide) flawlessly.

▪ Have used with ATDM apps as well.

Tool provides unadulterated report of API usage

▪ We discovered API calls we did not expect to find!

▪ Profiling technique avoids risk of only finding what you intentionally search for.

▪ Output format is natural for Trilinos users and required no code modifications.

9

