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What Makes Software Sustainable?

When thinking about what makes software sustainable, the
first associations might be the existence of a continuous
integration (CI) framework; the existence of a testing
framework composed of unit tests, integration tests, and end-
to-end tests; and also the existence software documentation.
Following those closely, we then think of platform portability
and efficiency. However, when asking what is a common
deathblow for a scientific software product, it is often the
lack of platform portability.

When surveying the research software landscape, we
can identify some products that have a lifetime that far
exceeds the typical 3–5 years that a specific supercomputer is
operational, and some of those software products have been
around for several decades (Arndt et al. (2019); The Trilinos
Project Team (2020)). On the other hand, some libraries are
successful for a period of time and then fade out. When
investigating the source of decline for some products, it is
often that the jump from one hardware architecture to the
next was too big, and the product failed to keep up with the
development of other software and hardware ecosystems.∗

In that sense, the lack of software portability and the lack of
flexibility to embrace future hardware designs is a time bomb
that limits the lifetime of software.

The Importance of Platform Portability
Grows

The lack of platform portability is becoming a critical
weakness as we see an explosion of diversity in hardware
architectures employed in supercomputers. In the last
century, the hardware development was mostly incremental,
as it was driven by the clock frequency increase of the
processors (Schaller (1997)). During that time, the software
developers usually succeeded in transferring to newer chip
technologies by applying minor modifications or by simply
leveraging the “free lunch” (Sutter (2005)) that came with
higher operating frequency. That said, the move from single-
core processors to multi-core processors in the early 21st
century was incremental enough to be mastered by many
software products that did not embrace platform portability
as central design principle. This is partly because using
pragmas and the OpenMP language allowed for a smooth
transition. In addition, only the performance—not the
functionality—of software was endangered when ignoring
multi-threaded or multi-core hardware capacity. In fact,
single-threaded software remains functional and can still

achieve acceptable performance. However, at least since the
rise of many-core accelerators (e.g., GPUs) and the adoption
of special function units and lightweight ARM processors for
supercomputing, software libraries can no longer ignore the
hardware changes. As a consequence, the lack of platform
portability for emerging and future hardware technology is
among the main threats for the sustainability of a given
software product. Unfortunately, we already have a wide
range of hardware architectures deployed in supercomputers,
and many of these chips come with their own programming
language and intrinsic routines.

The Levels of Portability
There are multiple levels to portability. Depending on the use
case, platform targets, and objectives, some applications may
find it sufficient to restrict themselves to a specific portability
level. The first distinct level is no portability, where the code
compiles and runs for only one type of high-performance
computing (HPC) system. The same sort of hardware and
compute capabilities are expected. Another option is to
support partial software portability. An application using
such a model will be dependent on some platform model
abstraction. For example, the model could expect any CPU
type combined with one or more accelerators, either from
AMD or NVIDIA. In such a case, a hybrid programming
approach featuring a CPU programming model like OpenMP
is combined with an accelerator programming model like
HIP to ensure portability (and possibly good performance)
on the machine. As a more advanced case, one might
consider full software portability, where the application is
able to execute and run on any type of platform, including
hypothetical future machines that might feature field-
programmable gate arrays (FPGAs). In this case, a practical
example is the SYCL programming model, which features
compiler backends that support some FPGAs, all mainstream
HPC accelerators, and ARM-based hardware. Finally, and
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especially important for HPC applications, there is the level
of performance portability, which means that the code will
not only compile and run on target platforms, but it will
also achieve high efficiency by providing performance close
to the machine’s total capabilities. To achieve performance
portability, one needs good software design practices (e.g.,
code portability) and full command and understanding of the
problems inherent in computing unit granularity vs. problem
granularity. The latter requires using specific programming
techniques to fully express an application’s parallelism and
scheduling to spread the workload, dynamically, depending
on the machine hardware’s computing units.

Designing for Platform Portability
Ignoring efforts that are likely doomed to fail, as they
permanently redesign to reflect the changes in hardware
architecture, one can identify two different approaches to
enable cross-platform portability and readiness for future
hardware architectures. One approach is the adoption of
a hardware portability layer that is devoted to supporting
hardware through an abstraction. Popular examples are the
Kokkos (Carter Edwards et al. (2014)) abstraction layer
and the Raja (Beckingsale et al. (2019)) abstraction layer;
both are extremely successful in supporting new hardware
technologies and providing the users with a unique interface
that allows applications to run the same parallel code on very
different hardware architectures. The software products that
rely on these abstractions have virtually no porting effort,
and are guaranteed to run on current and future hardware
supported by the abstraction.

The second approach is to decouple the library-core
functionality from hardware-specific kernels and support
the backends for different hardware (e.g., the Ginkgo
software package). From a high-level, one could argue
that the second approach takes the first approach and
combines the high-level algorithms, the hardware abstraction
layer, and the hardware-specific kernel support into a
single software product. However, unlike the first approach,
this supports hand-written optimized kernels for each
hardware architecture. In addition, the abstraction and kernel
development being focused on a single product allows for
a more consumer-specific kernel design and performance
optimization.

Relying on a Portability Layer
Relying on a portability layer removes the burden of platform
portability from the library developers and allows them
to focus exclusively on the development of sophisticated
algorithms. This convenience comes at the price of a
strong dependency on the portability layer, and moving
to another programming model or portability layer is
usually extremely difficult or even impossible. Furthermore,
relying on a portability layer naturally implies that the
performance of algorithms and applications is determined
by the quality and hardware-specific optimization of the
portability layer. This performance penalty may not always
be insignificant, as portability layers usually have a wide
user base, and dramatic changes to the interface, logic, or
kernel design of the portability layer would likely result in

the failure of some applications that rely on the portability
layer. Hence, performance portability layers should avoid
modifying the design or hardware coverage, which can limit
the opportunities to heavily optimize kernels for a new
hardware architecture.

Natively Supporting Various Hardware
Backends
Libraries that decouple the core algorithms from the
hardware-specific kernels and supporting various hardware
backends can apply much more aggressive hardware-specific
optimization and often achieve higher performance. One
reason is that the set of kernels is usually much smaller
than what portability layers provide as the hardware-specific
backends, because only the kernels required by the library’s
core algorithms are included. A second reason is that a
library has more freedom to phase out support for a specific
hardware architecture. This can usually be justified because
the dependency on a library is generally much looser than
the dependency on a portability layer, and applications
“just” need to find a new library that provides the same
functionality, while the much deeper dependency on a
portability layer virtually prohibits moving to an alternative
portability layer. To use this model, a library must be
designed with modularity and extensibility in mind. Only a
library design that relies on separation of concerns between
the parallel algorithm and the different hardware backends
can allow such a feature. The different backends need
to be managed and interacted with thanks to a specific
interface layer between algorithms and kernels. However,
the price for the higher performance potential is high: the
library developers have to synchronize several hardware
backends, monitor and react to changes in compilers, tools,
and build systems, and adopt new hardware backends and
programming models. The effort of maintaining multiple
hardware backends and keeping them synchronized usually
results in a significant workload that can easily exceed the
developers’ resources.

Decisions in Platform Portability
We are unable to provide general advice whether relying on
a portability layer or natively supporting various backends
is the better choice. This decision depends on the scope
of the library, the tradeoff between performance and
platform coverage, and the available resources. However,
we are convinced that only software packages that provide
platform portability and are able to jump to new hardware
architectures are sustainable and can play a role in the
very diverse world of HPC. We therefore believe strongly
that platform portability is a central design principle in the
creation and development of research software libraries.
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