
Restoring productivity through the advanced usage
of Git

Roscoe A. Bartlett
bartlettroscoe.github.io

rabartl@sandia.gov
Department of Software Engineering & Research, Sandia National Laboratories

I. INTRODUCTION

The best software development processes are usually the
simplest processes. However, there are situations where stick-
ing with simple processes can lead to large reductions in
productivity and delays due to difficult constraints and realities
that exist in many projects. In many cases, adopting more
sophisticated development and integration processes using ad-
vanced Git [1] workflows can restore much of the productivity
that would otherwise be lost. The skilled usage of the Git
distributed version control system and the exploitation of
special properties of the problem at hand can often be used to
work around the most difficult situations.

Below we provide one example where the more advanced
usage of Git has been used to avoid significant reductions in
development productivity. The goal is to provide some motiva-
tion and inspiration for more developers in the computational
science and engineering (CSE) community to acquire a deeper
understanding of Git and the building blocks for advanced
Git workflows. Given these tools, they can develop similar
customized workflows to help boost their productivity as well.

II. BACKGROUND

At the foundation of modern agile software development
processes are the practices of test-driven development, rapid-
response peer reviews, and continuous integration (CI) of dif-
ferent streams of development [4], [5], [8], [10]. Modern Git-
based hosting platforms like GitHub and GitLab provide solid
foundations for modern agile methods. Development is done
in small short-lived topic branches that are created off of the
main development branch, called “trunk” (i.e. master, main
or develop) [2]. The next set of changes in the next topic
branch (by the same or a different developer) are then based on
the most up-to-date version of trunk. This simple continuous
integration workflow is depicted in Figure 1. This quick
integration approach minimizes the occurrence of textual1 and

SAND2020-6704 C: This paper describes objective technical results and
analysis. Any subjective views or opinions that might be expressed in the
paper do not necessarily represent the views of the U.S. Department of
Energy or the United States Government. Sandia National Laboratories is
a multimission laboratory managed and operated by National Technology
& Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of
Honeywell International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525.

1Textual conflicts are when lines in the files themselves conflict when doing
a git merge or git rebase and requires manual intervention to resolve
the conflicts in order to have have an updated Git branch

semantic2 merge conflicts and allows the development team to
move very quickly in an agile way. Merge conflicts can be a
large cause of deterioration in development productivity.

With this simple CI workflow, pull requests (PRs3) are
created for these small topic branches and a rapid code review
by one or more peer software developers is done. Automated
testing of the changes in the PR is also done on each PR
using integrated testing services such as Travis CI, Circle
CI, GitHub Actions, GitLab CI, or using custom continuous
testing systems. Once a PR is reviewed and approved, and
the automated testing comes back passing, then the PR is
merged into trunk. This PR rapid-review and pre-merge
testing process is a step up from the classic CI processes
described in [5] and [8] where reviews really had to be done
using pair programming and testing was only done post-merge
(i.e. after the merge of the changes into trunk).

The definition of CI from XP [5] is:

Integrate and test changes after no more than a
couple of hours.

Also from [5], “The integration step is unpredictable, but
can easily take more time than the original programming.
The longer you wait to integrate, the more it costs and the
more unpredictable the cost becomes.” Therefore, the key goal
for frequent and rapid integrations into trunk is to avoid
merge conflicts. The role of testing the changes is to ensure
that developers stay productive because pulling the updated
trunk and experiencing broken code is highly disruptive
and kills developer productivity. In order to facilitate frequent
integration and maintain working software, one of the primary
practices in XP [5] is the “Ten Minute Build”:

Automatically build the whole system and run
all of the tests in ten minutes.

The argument is that 10 minutes is fast enough to remove
any excuse for developers not to merge their work at least
once a day.

2Semantic conflicts occur when the branches merge just fine with Git but
the software is otherwise broken due to inconsistent changes.

3Pull requests (PRs) in GitHub are instead called merge requests (MRs)
in GitLab and have almost identical usages, features, and workflows and
can therefore the term PR and MR used interchangeably. Therefore, for the
reminder of this paper, the term PR will be used to mean PRs with GitHub
or MRs with GitLab.



M1 M2

trunk

Dev 1 Dev 2

A1 A2 B1 B2

topic-a topic-b

Fig. 1. Simple continuous integration workflow with short-lived topic
branches: Developers make changes on short-lived topic branches that have
a quick review by another developer and are quickly tested and merged
to trunk. Another developer (or the same developer) then creates a new
topic branch based off of the most up-to-date version of the code, thereby
eliminating the chance of a merge conflict.

III. REAL-WORLD IMPEDIMENTS TO SIMPLE FAST
CONTINUOUS INTEGRATION

For many projects, there is a tug of war between the
frequency of integrations with trunk and how much testing
one does to ensure the stability of the software before merging
to trunk. As the level of testing is increased (i.e. adding more
build configurations and more platforms) the wall clock time
to run the tests increases and that delays the integrations with
trunk. As the integrations with trunk become less frequent,
the greater the chance for expensive merge conflicts when
integrating to trunk or the more delay that occurs for follow-
on work. Alternatively, with less testing, integrations can occur
more frequently which reduces the probability of experiencing
merge conflicts or delaying follow-on work. But with less
testing, the chance that broken code will be merged to trunk
increases which then delays the detection of defects and can
damage the productivity of developers who may experience
broken software. As time to detect defects goes up, the cost to
fix defects grows exponentially in many cases [9]. Detecting,
triaging and debugging defects is a very expensive activity
which kills the productivity of the development team and slows
their progress in implementing new features. So ultimately, the
trade off between merging more frequently to trunk versus
doing more testing before merging to trunk comes down to
balancing the costs of dealing with merge conflicts and delays
in follow-on work with the increased costs of removing defects
after the merge to trunk. This is the fundamental struggle
in the implementation of continuous integration in real-life
projects.

In some projects, the trunk branch needs to be maintained
in a near deployable state at all times. For larger more complex
projects, therefore, the level of testing before merging to
trunk needs to be very high which can significantly delay
integrations with all of its productivity-robbing impacts. In

addition, issues with both the implementation of the infras-
tructure driving automated testing and issues in the software
being tested itself can cause additional delays in integrations.
An interesting case study of this is the current continuous
integration process and pre-merge automated testing imple-
mentation being used for the Trilinos project [11].

Trilinos [11] is a large collection of software that contains
advanced numerical algorithms for constructing computational
science simulation codes. It is implemented mostly in C++ and
uses a lot of deeply nested templating which is known to lead
to very long build times. In addition, Trilinos must maintain
portability to a number of advanced platforms that drive
important internal projects at Sandia National Laboratories
(SNL). One important customer is the Advanced Technology
Development and Mitigation (ATDM) project at SNL which
currently drives much of the Trilinos and close ATDM appli-
cation (APP) development. The ATDM APPs SPARC [7] and
EMPIRE [6] require relatively frequent integrations with the
main Trilinos development branch develop. Critical plat-
forms include machines with GPUs, various node threading
and acceleration architectures which involve builds with every
major compiler including Clang, GCC, Intel, IBM, and CUDA.
Therefore, the Trilinos develop branch must maintain a
high degree of stability on a wide range of these challenging
platforms that drive the ATDM project.

To maintain the stability of the develop branch, the
Trilinos team has implemented a custom pre-merge PR testing
process using Jenkins to test PRs in GitHub. Currently, there
are seven primary build configurations of Trilinos that test
with Clang, Intel, CUDA, and three different versions of GCC.
Within these seven configurations, several critical options are
varied (e.g. debug vs. optimized, runtime checking vs. no
runtime checking, shared vs. static libraries, different data-
types for template instantiations, etc.) to provide some rea-
sonable coverage and protection for a range of important SNL
customers. The implementation of this PR testing system has
helped to dramatically improve the stability of the develop
branch.

While the Trilinos PR testing process has been very success-
ful at improving the stability of the main develop branch, it
has not come without some cost and impacts to the basic CI
workflow. Due to some of the issues described below, there
have been periods of time where there have been significant
delays in integrating topic branches into the main develop
branch. The implementation of CI testing in real-world CSE
projects is non-trivial and the below discussion is meant to
highlight some of the non-trivial challenges that can occur and
to explain the causes of CI delays that motivate using more ad-
vanced Git workflows to work-around these challenges. First,
there have been periods of time where some of the PR builds
took many hours to run, depending on what was changed in the
topic branch compared to develop (e.g. the Intel build took 5
hours and the CUDA build took nearly 10 hours in wall clock
time to run at different points in time). Since PR testing is
performed in each PR independently and since there are finite
computational cycles to run these builds, some PRs have seen



significant delays before the PR testing processes even started
to test the topic branch in the PR. Delays starting testing
(due to waiting for computational resources to come available
currently being used to test other PRs) of several hours are
fairly common and can be over 24 hours in some cases. Also,
random failures in the Trilinos tests are sometimes injected
into the develop branch that can fail a PR testing iteration.
In addition, the Trilinos PR testing process has experienced
some random failures in the underlying testing infrastructure
(e.g. git fetch errors due to network connectivity problems,
Jenkins communication problems, disks running out of disk
space, overloading the RAM on the compile node crashing
the build with out-of-memory errors, overloading of the cores
on the compute node resulting in test timeouts that would not
occur if the CPU was not overloaded, etc.). Random failures
in Trilinos itself which sneak onto the develop branch
along with the random infrastructure failures can result in PR
build/test iteration failures that have nothing to do with the
PR topic branch being tested. And a single test failure in a
single one of the seven PR builds requires rerunning all seven
builds again from the beginning which increases the chances
of having a failed PR testing iteration. For example, if there
is only a 20% chance of a failure in any one of the seven
PR builds, then the chance of having at least one of the PR
builds having a failure jumps to 1−(1−0.2)7 = 0.79 or 80%.
In this example, with only a 20% probability for any one PR
testing iteration to pass, it can take many PR testing iterations
for all seven PR builds to pass and allow the merge of the PR
to develop. Such extreme cases are not the norm but there
are periods of time where this has the case (but there are no
systematic statistics being collected to show the frequency of
these occurrences).

The combination of delays in starting PR testing, expensive
PR builds once started, random failures in the Trilinos tests
themselves, random failures in the underlying PR testing
infrastructure, and requiring a single PR test iteration with
100% passing tests in all seven PR builds has resulted in
periods of time where a given PR topic branch took several
days to merge. In some rare extreme cases, the delay in
merging a PR topic branch to develop has stretched into
two weeks.

When it can take up to several days or over a week to merge
a PR topic branch to trunk before follow-on work can begin
based on that, simple fast continuous integration (i.e. where
small topic branches are merged frequently) is not realized. In
situations like this, one can adapt by using other approaches to
maintain productivity. Some examples of more advanced Git
workflows to work around long delays to merge to develop
in the Trilinos PR testing process are described in the next
section.

IV. ADVANCED GIT WORKFLOWS TO RECOVER
PRODUCTIVITY

To work around situations where simple continuous integra-
tion breaks down, one can often exploit special properties of
the code base, the development team, and other considerations

to devise a specialized Git workflow to avoid productivity
losses. One example where this has been done is the SNL
ATDM project involving specialized build configurations of
Trilinos supporting the ATDM program [3].

The ATDM Trilinos build configuration is version controlled
along with the rest of Trilinos. This ensures the configuration is
consistent with the Trilinos source code and it simplifies the
deployment of this configuration system to the ATDM APP
customer codes. The ATDM Trilinos build configuration is
contained in the Trilinos Git repository and currently contains
over 150 files and 6k lines of code. Changes isolated to just
these files results in the Trilinos PR tester to only run a small
number of unit tests for the ATDM Trilinos configuration code.
But sometimes, changes to other files in Trilinos are needed
as well including base-level files that trigger the enable and
testing of all Trilinos packages and the full Trilinos test suite.
(The PRs that trigger the full Trilinos test suite to run are the
ones that often result in the longest delays in merging due to
needing many PR testing interactions until they all pass.) The
ATDM Trilinos configuration currently supports 46 different
builds of Trilinos on eight different platforms including several
advanced platforms consisting of multiple GPUs per node and
several different threaded CPU and accelerator architectures
that drive the ATDM program. These different ATDM Trilinos
builds are run every 24 hours against a Trilinos branch
called atdm-nightly and post to the Trilinos CDash site,
where they are monitored. The atdm-nightly branch is
updated from the Trilinos develop every day at 9 PM local
time. Often times, changes in the underlying systems, third-
party libraries, and changes in Trilinos itself require updates
to the ATDM Trilinos configuration files. Each update of
these ATDM Trilinos configuration files requires creating a
PR and subjecting it to PR testing involving the seven PR
build configurations before it is merged to the main Trilinos
develop branch.

In the early days of the development of the ATDM Trilinos
configuration and stabilization effort, there were periods of
time where significant delays were experienced in the merging
of PRs to the develop branch due to some of the issues
described above. This caused unnecessary delays in deploying
changes to the ATDM Trilinos configuration to nightly testing
and delayed follow-up work. Therefore, to address these de-
lays, a more sophisticated set of Git workflows was developed.
The key elements of that workflow are shown in Figure 2.

The workflow shown in Figure 2 addresses two problems.
The first problem addressed is in avoiding delays deploying
updates to the ATDM Trilinos configuration to the nightly
ATDM Trilinos nightly builds to restore the running of the
Trilinos test suite to protect ATDM customers. To accomplish
this, one cannot directly merge the topic branches to the
atdm-nightly branch in the middle of the day as that
would result in inconsistent versions being tested for the
current testing day. Instead, the topic branch in the un-
merged PR (e.g. topic-b and topic-c) is merged to an
intermediate branch atdm-nightly-manual-updates.
The atdm-nightly branch is then updated



atdm-nightly

Dev 1

A1 A2
topic-a

topic-b

atdm-nightly-manual-updates

B1 B2

develop

C1 C2
topic-c

Dev 2

Dev 3

EMPIRE Trilinos 
Integration

SPARC Trilinos 
Integration

topic-bc

Fig. 2. ATDM Trilinos Configuration Git Workflow: This is the workflow used to develop and deploy changes to the ATDM Trilinos configuration to
drive testing of Trilinos on the ATDM platforms and integration testing with the SPARC APP code.

each night by first fast-forward merging the
atdm-nightly-manual-updates branch and then
merging in the develop branch. That way, the nightly
builds for the next testing day include all of the changes in
the develop branch and all of the manual merges from the
prior day through atdm-nightly-manual-updates.

The second problem this workflow addresses is avoiding
merge conflicts between different change sets or avoiding
delays in starting follow-up work due to delays caused by
PR testing issues described above. In the scenario shown
in Figure 2, the branches topic-b and topic-c are
changes/additions to the ATDM Trilinos configuration that
involve the same files. If these changes were to be made
on two independent branches from the same ancestor, then
their merge would cause massive conflicts. To avoid these
conflicts, the changes in the topic-c branch must be made
following the changes made in the topic-b branch. But
since the merge of topic-b to develop is being delayed
due to issues with the PR testing process described above, one
will need to either wait to make the changes in topic-c
until topic-b is merged to develop (which could be
several days or longer) or one will have to use a more
sophisticated workflow which is shown in Figure 2. In this
case, the topic-c branch is created off of the un-merged
topic-b branch to avoid any conflicts. To facilitate the
code review of the topic-c branch, a new branch called
topic-bc is created off of topic-b and then a PR for
topic-c is created against topic-bc. This allows for a
quick code review of the changes unique to topic-c. A PR
of topic-bc is then created against the develop branch,
which, when merged, will merge the topic-b and topic-c
branches to develop.

Also shown in Figure 2 is the topic-a branch which was
created by a regular Trilinos developer and which takes more
than one day for the PR tester to allow the merge to develop

in this scenario.
The adoption of this more sophisticated Git workflow has

allowed the ATDM Trilinos stabilization and integration effort
to remain productive and to be less sensitive to delays caused
by issues with the Trilinos PR testing system. Without using
this more sophisticated workflow over the last 1.5 years, the
this effort would be a least a month behind where it is now.

V. CONCLUSIONS

In an ideal world, simple continuous integration with trunk-
based development (depicted in Figure 1) would yield the
greatest productivity. But in the real world, software is ex-
pensive to build and test; automated testing processes are non-
robust and are subject to many types of random failures; devel-
opers don’t always chase down random failures as quickly as
they should; no one is watching over the entire process looking
for troubling behavior and then acting quickly to resolve
it; code bases are not always partitioned cleanly separating
concerns and avoiding unnecessary synchronizations. It is in
situations like this where more knowledge and skill with the
advanced usage of the Git distributed version control system
can have the largest impact by working around these problems
and recovering most of the development teams productivity
that would otherwise be lost. Armed with advanced knowledge
and skill with Git, a small development team can quickly
devise workflows that work around difficult situations by
exploiting special properties of the problem at hand.

An example was given where the advanced usage of Git
was able to eliminate almost all of the productivity losses
and schedule delays that would have occurred with following
the simple CI process due to delays caused by issues in
the Trilinos PR testing process. Without using this more
sophisticated workflow over the last 1.5 years, the ATDM
Trilinos stabilization effort would be a least a month behind
where it is currently.



However, these increases in productivity through the ad-
vanced usage of Git do not come without a cost. In addition
to the increase in complexity in the processes themselves that
result from the usage of advanced Git workflows, there is also
a large up-front cost in training developers to learn Git well
enough to understand and perform the workflows correctly.
But amazing things can happen when all of the developers in
a team reach this level of Git understanding and skill!

REFERENCES

[1] Git distributed version control system. https://git-scm.com.
[2] Turnk based development. https://trunkbaseddevelopment.com.
[3] R. Bartlett and J. R. Frye. Creating stable productive cse software

development and integration processes in unstable environments on the
path to exascale. pages 1–8, 2019.

[4] K. Beck. Test Driven Development. Addison Wesley, 2003.
[5] K. Beck. Extreme Programming (Second Edition). Addison Wesley,

2005.
[6] Matthew Tyler Bettencourt, Eric C Cyr, Richard Michael Jack Kramer,

Sean Miller, Roger P. Pawlowski, Edward Geoffrey Phillips, Allen C.
Robinson, and John N. Shadid. Empire - em/pic/fluid simulation code.
8 2017.

[7] Paul Crozier, Micah Howard, William J. Rider, Brian Andrew Freno,
Steven W. Bova, and Brian Carnes. Advanced technology and mit-
igation (ATDM) SPARC re-entry code fiscal year 2017 progress and
accomplishments for ECP. 9 2017.

[8] P. Duvall and et. al. Continuous Integration. Addison Wesley, 2007.
[9] S. McConnell. Code Complete: Second Edition. Microsoft Press, 2004.

[10] M. Poppendieck and T. Poppendieck. Implementing Lean Software
Development. Addison Wesley, 2007.

[11] The Trilinos Project Team. The Trilinos Project Website.


