
White paper submission to Collegeville Workshop 2020

1

An Ecosystem Perspective of Scientific
Software Developer Productivity
C. FAN DU AND JAMES HOWISON1

An ecosystem perspective of scientific
software developer productivity is to consider
the contribution of software developers
within the scientific software ecosystem.
Researchers and practitioners of scientific
software development are familiar with the
fact that software components depend on each
other in a layered architecture [2, 3, 7]. Along
with the technological structure, a set of
actors engaging in scientific software work co-
constitute the scientific software ecosystem
[5]. Common examples of software ecosystem
outside the science space include the Google
Android ecosystem and Apple iOS application
ecosystem. They are centered around a
company-hosted platform of open innovation,
involving both internal and external
contributors in product development. Other
open source software ecosystems such as
Linux and Apache software ecosystem, leaning
more towards their contributor communities,
have more bottom-up structure for
coordinating development [6]. The scientific
software ecosystem is distinct and perhaps
more complex. It spans commercial space,
communities of scientific researcher-
developers, and institutions of science,
including universities, research
centers/laboratories, funding agencies,
journals, professional societies, and science
policy organizations and advocacy groups, etc
[4]. The sophisticated networks of actors
within scientific software ecosystem have
multiplex implications, such as hybrid
resourcing models and heterogeneous forms
of organizing for scientific software projects
[1]. These constitute the organizing
complexity of scientific software ecosystem.

1 The University of Texas at Austin

Another layer of complexity within the
scientific software ecosystem is its
technological complexity. Open source
scientific software components build on top of
each other, resulting in software stacks with
heavy dependencies often without ex ante
consideration for a cost-minimizing
dependency structure design. Such
consideration requires a holistic view of open
source scientific software dependencies,
which is absent in science. As an outcome, the
dependency risks of scientific software
accumulate over time and threatens the whole
ecosystem with the possibility of “software
collapse” [2] and high ongoing maintenance
costs. Moreover, developers need to know
how their software is being used, and
especially with what other components their
software is typically used. [3]. Without these
insights, the needed user-developer support
and improvement of the software components,
as well as the needed coordination work
between scientific software projects often fall
out of the sight of scientific software
contributors. This is the complexity of
software component use contexts and
complementarity within scientific software
ecosystem. The complexity of software
dependencies, use contexts, and
complementarity largely constitutes the
technological complexity of scientific
software ecosystem. The technological
complexity also involves technological
changes, for example, the advances in
particular software technologies or hardware
could induce the need for updating existing
software routines. In such cases software
projects need to be aware of the external

White paper submission to Collegeville Workshop 2020

2

technological changes to continue to function
well and be up to date.

In addition, scientific progress also raises the
requirement for software to stay in sync with
novel datasets, approaches, methodological
treatments, and techniques, etc. This is the
science complexity of the scientific software
ecosystem, as scientific software development
and scientific progress go hand in hand.

Taken together, an ecosystem perspective of
scientific software is revealing as it points to
the organizing, technology, and science
complexity within the ecosystem. These
complexities are rarely attended to, ending up
with a large portion of needed work unseen
and thus undone within the ecosystem. In the
following part, we aim to unpack the work
needed to ensure continuity of the scientific
software ecosystem.

First, the science complexity and technological
complexity require software projects to stay in
sync, on one hand keep up with the external
technology changes and scientific progress, on
the other hand mitigate dependency risks and
coordinate with each other for their
complementarities. Sometimes, due to the
organizing complexity of the ecosystem,
scientific software projects need to react to the
requirements of various users and
stakeholders within the ecosystem. Altogether,
there is a demand for scientific software
projects to keep abreast of their environment.
We refer to this demand as the sensing work
of scientific software projects.

Second, in reaction to all sorts of complexity
and requirements sensed from the ecosystem
environment, scientific software projects need
to take action to adjust themselves and their
software products. The due actions include
fixing bugs, improving the design and
architecture of software, implementing new
methods, models, or procedures, providing
user support such as updating documentation
and responding to questions and bug reports
from end-users and peer software producers.
What we list here perhaps still does not
exhaust all the adaptation work scientific

software projects take on within the
ecosystem. But if software projects do not
proactively “sense” the ecosystem first, the
adaptation work will be omitted as unknown
additional work to regular project
maintenance work.

Third, all the local adjustments and updates of
one scientific software project as the result of
sensing need to be channeled through the
interconnected software projects, user and
relevant stakeholder groups. Otherwise, if
concerted efforts cannot be achieved among
interconnected software projects and actors
within the ecosystem, local adjustments will
be less effective, and potentially cause
cascading work for projects nearby. For local
adjustments to achieve its due effect,
synchronization work within the ecosystem
needs to be accomplished. Synchronization
means scientific software projects collect their
adjustments, release them in an orderly
fashion reaching out to all the related projects,
stakeholders, and potential users/adopters.
Sometimes software projects need to connect
to and even synergize with other projects,
especially as effective or potential component
adopters or integrators. This is also
coordination work that needs to be done at the
ecosystem level, for a collection of
interdependent projects to work together.

In summary, an ecosystem perspective of
scientific software development is to examine
software projects in relation to other projects
and relevant stakeholders. Distinctively,
scientific software ecosystem bears the
complexity of organizing, technology, and
science. These complexities that scientific
software projects commonly face give rise to
the work needed to be done at scale. Thus, an
ecosystem perspective of scientific software
developer productivity sheds light on the
work developers need to engage in. If
synchronization among interrelated scientific
software projects and actors can be achieved
at the ecosystem level, dependency risks will
be effectively reduced, and scientific software
will perform better. The sustainability of
scientific software and the experience of
software work will be consequently improved,

White paper submission to Collegeville Workshop 2020

3

attracting and sustaining the motivation of
more and more diverse developers.

Because while it is useful to identify the types
of work needed, we must still tackle the
question of how can we motivate this needed
work? To answer this question needs not just
the engagement of scientific software
researchers, but also the instincts and
experience of scientific software practitioners.
Here we raise the question in hopes of opening
a lively conversation.

Another note of our discussion is that while we
primarily consider the scientific software
ecosystem at its full scale, some scientific
software projects or scientific institutions (e.g.,
national labs) lead their own ecosystem of
interrelated sub-projects. However, such large
software projects still run within the full-scale
scientific software space. It will be a very
interesting question, too, to consider how
these organizational ecosystems of scientific
software manage the relationship with their
internal software projects and external
projects.

Reference

1. Johanna Cohoon and James Howison. 2018.

Routes to Sustainable Software: Transitioning to

Peer Production. Academy of Management

Proceedings 2018, 1: 12182.

2. Konrad Hinsen. 2019. Dealing with Software

Collapse. Computing in Science & Engineering 21, 3:

104–108.

3. James Howison, Ewa Deelman, Michael J.

McLennan, Rafael Ferreira da Silva, and James D.

Herbsleb. 2015. Understanding the Scientific

Software Ecosystem and Its Impact: Current and

Future Measures. Research Evaluation 24, 4: 454–

470.

4. James Howison and James D. Herbsleb. 2011.

Scientific Software Production: Incentives and

Collaboration. Proceedings of the ACM 2011

conference on Computer supported cooperative

work - CSCW ’11, ACM Press, 513.

5. Konstantinos Manikas and Klaus Marius Hansen.

2013. Software Ecosystems – A Systematic

Literature Review. Journal of Systems and Software

86, 5: 1294–1306.

6. Maha Shaikh and Ola Henfridsson. 2017.

Governing Open Source Software through

Coordination Processes. Information and

Organization 27, 2: 116–135.

7. James Howison and Kevin Crowston. 2014.

Collaboration Through Open Superposition: A

Theory of the Open Source Way. MIS Quarterly 38,

1: 29–50.

