The Art of Serving HPC Products to Business
while they are still hot

Vadim Dyadechko

vdyadechko@nwsi | . com

vadi m dyadechko@xxonnobi | . com

Disclaimer

The opinions expressed here are solely my own and do not express the views or opin-
ions of my employer.

Larger than coding

This year’s theme of the Collegeville Workshop is developer productivity; the theme
suggests that the major s/w development expense is coding, which I would like to
contest. While improving developers productivity is important, coding itself is just
one part of the larger picture; there are just too many other aspects of s/w technology
that constantly toll the budget and beg to be improved. I strongly believe that the
bigger prize is in optimizing the entire s/w product pipeline/ecosystem. At the end of
the day, wider search yields better results.

The void

The pressure of (over)achievement makes many of us commit sins that contribute to
mysterious and seemingly inevitable product release delays. It is not uncommon for
a developer or a project manager to declare a certain feature to be implemented the
moment it compiles with no errors in a local working copy, way before it is committed
to the central repo, passed any review, quality control, or had a chance to be docu-
mented or tested in the production environment. This creates a poorly understood and
managed void, the lag between the moment the feature was reported to be completed
and the moment it actually becomes useful to the end users. This void has roots in
a widespread misconception that the s/w is ready once the coding is completed, and
putting it to work is unimportant trivial routine that somehow happens on its own. I
would like to address this misconception and talk about little things that usually stay
under the radar but distinguish a successful s/w shop from a sloppy one.

DevOps

The Development Operations (DevOps) is a popular concept that promotes close busi-
ness engagement and high degree of automation in the s/w development pipeline.
There are many DevOps definitions floating around, most saying very little about the
actual process, but all unanimous on the ultimate goal: delivering s/w features and bug-
fixes to business ASAP. In other words, the goal is the reduction of the lag mentioned
above to days, hours, and possibly minutes. I would risk to offer yet another DevOps
manifest that emphasizes the main driving forces behind it:

e non-coding tasks (building, testing, integration, deployment, etc.) are critical parts of the
s/w product pipeline;

e non-coding tasks are core responsibilities of the development team.

Everything else: automation, short delivery times, mindset on productivity — are just
natural implications of the positive reinforcement mechanism created by consolidation
of development and operations in one hands.



The formal transfer of responsibilities does not change anything unless it also grants
freedom to operate, freedom to select the right tools, freedom to control testing and
production environments. When executed properly, the DevOps re-org prevents the
diffusion of task ownership (nothing falls between the cracks) and encourages wide
range of optimizations, now internal to one team:

e investment in quality code and systematic testing saves a lot of bugfixing time,
e custom automation helps to prevent otherwise inevitable human errors,

¢ freedom to select the right tools/environment/hardware for the job saves a lot of
integration/porting /tuning time,

e power to control development and production environments greatly simplifies
the configuration and integration tasks.

In a long run, all these improvements reshape your code into a robust product: main-
tainable, testable, deployable.

While many of DevOps task and activities fall into the category of IT operations,
it is critical not to delegated DevOps outside the development team. The production
pipeline has a lot of moving parts that must fit perfectly. Involvement of developers in
daily operations has enormous positive impact on the quality /usability of the DevOps
components; the best pieces of s/w were created for personal use: Unix, C, Perl, TeX,
Git.

Personal touch

Our company has a rich history of proprietary HPC development. The PDE solvers
developed at ExxonMobil demonstrate industry-leading performance and scalability
and were featured in media and technical papers. Much less publicity is given to the
streamlined and highly automated daily DevOps that made such achievements possi-
ble.

Every day the simulator development team releases multiple bugfixes and improve-
ments, each passing the QC pipeline of hundreds of regression tests, and becoming
available for downstream integration just 15 minutes after tagging. We maintain sev-
eral versions of the simulator, build and test executables for multiple HPC systems. A
large processing volume of operations like this cannot be sustained by a small team
without investing time and effort into robust development and testing environment.

What started a decade ago as a collection of helper scripts has evolved into a com-
prehensive suite, a proprietary toolchain for automating QA /QC and deployment pro-
cesses on HPC. This technology takes the burden of routine tasks off the engineers and
scientists shoulders so that they can focus on solving the problems that are simply too
hard for machines: making high fidelity predictions about the behavior of complex sub-
surface systems. The suite has short list of dependencies and does not require elevated
privileges; much of its success is due to the conservative scope, focus on productivity
and automation, and active support.

I'will be happy to talk about the governing principles and the challenges of DevOps,
as well as share my personal observation, experiences, and thoughts on running a busy
HPC shop.



