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1 Background

Testing is a useful practice for producing high-quality software. Unfortunately, because of its

complex computational behavior, it is very difficult to test scientific software. Scientific software

developers often build software based upon a set of mathematical equations and use mathematical

analysis to verify the corrections of the computational model [10, 15]. For example, scientists use

scientific software to determine the impact of modifications to nuclear weapon simulations since

real-world testing is too dangerous and not allowed [15].

While testing is a useful practice, there are some technical challenges for testing scientific

software. The first challenge is the lack of test oracles [8]. An oracle is pragmatically unattainable

in most of the cases for scientific software because scientists develop software to find previously

unknown answers. Due to the lack of test oracles, scientific software developers often use judgment

and experience to check the correctness of the software. The second challenge is the large number of

tests required to test scientific software using standard testing techniques. Also, the large number

of input parameters makes it challenging to manually selecting a sufficient test suite [17]. Finally,

the presence of legacy code makes testing scientific software very challenging [1].

A previous systematic literature reported testing challenges due to the characteristics of sci-

entific software and the cultural differences between scientificers and more traditional software

engineers [9]. The authors subdivided the testing challenges resulting from the characteristics of

scientific software into four categories: a) test case development, b) producing expected test case

output values, c) test execution, and d) test results interpretation. Then subdivided the testing

challenges resulting from the cultural differences between scientific software developers and more

traditional software engineers into three categories: a) limited understanding of testing concepts,

b) limited understanding of the testing process, and c) not applying known testing methods.

Because of these challenges, scientific software developers are unlikely to use systematic testing

to check the correctness of their code [8, 13, 11]. Even though these developers conduct validation

checks to ensure the software correctly models the physical phenomenon of interest [10, 13], there

is still a need for testing that identifies differences between the model and the code [5]. In addition,

sometimes the reason for limited use of systematic testing results from the testing challenges posed

by the software itself [2].
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It is not clear how scientific software developers actually perform testing. Scientific software

developers commonly omit Unit testing because they have misconceptions about the benefits and

difficulties of implementing unit tests [1]. Scientific software developers under-utilize verification

testing because they are unaware of the need for it and the methods for applying it [3]. In many

cases, scientific software projects do not even include automated acceptance testing and regression

testing [14]. Furthermore, the scientific software community is lagging behind in the use of available

testing tools, at least partially due to the wide use of FORTRAN [16, 3, 12].

Moreover, there is a lack of recognition for the skills and knowledge required for software

development in scientific software development [7]. These developers are typically unfamiliar with

available testing methods [4, 6]. As a consequence, they do not usually have a set of written

quality goals. Scientists even treat software development as a secondary activity. Because of all

these factors, there is a need of proper training on software testing to motivate scientific software

developers and perform testing activities in practice.

2 Tutorial

While many testing techniques are beneficial in business/IT software, these techniques are under-

utilized in scientific software. To remedy this situation, we are developing a hands-on tutorial

entitled “Automatic Testing in Scientific Software” supported by a BSSw fellowship award. The

tutorial will start with background information and about the usefulness of using automatic testing

techniques in scientific software development. During this portion of the tutorial, we will present

challenges, potential solutions, and unsolved problems faced while testing scientific software from

our recent survey on testing research software. The second part of the tutorial will be hands-on.

We will cover different testing techniques, such as input space partitioning, test-driven development

along with some testing techniques specially designed for scientific software such as metamorphic

testing and run-time assertion. We will conclude the tutorial with a large group discussion to

gather input from the participants about which approaches are more suitable for their individual

projects. We will submit tutorial proposals to different conferences and national labs. We would

like to present a BSSw webinar once the tutorial is more mature. We are interested in delivering

the tutorial in other venues as well.
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