Module Systems and Developer Productivity

A whitepaper for the 2020 Collegeville Workshop on Scientific Software,focusing on Developer Productivity. Joe Frye; Sandia
National Laboratories

Introduction

Many modern scientific software projects depend upon a common ecosystem of community software. It is not uncommon for a
project to depend on a dozen different third-party libraries. These dependencies are often highly configurable, difficult to
build, and can have tailored dependencies of their own. All too often, developers are forced to spend a significant amount
of time just putting together a working environment in which to develop. That lost time that could have been spent on
more valuable activities. Additionally, having developers install their own dependencies leads to inconsistent development
environments across a team; that is, each developer may install slightly different versions of libraries with slightly different
configurations. This frequently leads to defects and inconsistent behaviors and causes developers to spend an inordinate
amount of time rooting out bugs because it is unclear whether the problems are in the application itself or in one of its
numerous dependencies. Moreover, having to configure and build libraries puts an onerous tax on build and test cycles; I have
personally been involved with projects where 75% of the build time is just building dependencies.

Providing developers with a common infrastructure to access the dependencies they need in a consistent, easy-to-use way can
solve these problems and directly improves developer productivity. First, if a system can provide pre-installed, ready-made
libraries, there is no wasted time spent by developers installing dependencies. Second, by provisioning a consistent set of
packages across development environments, the system makes it easier for developers to locate defects in their project code.
Finally, if libraries can be made available on-demand, then projects can build their code from a clean slate without added
overhead. In short, this means that developers can get on with the business of development.

All of these things can be accomplished by having a sufficient and mature environment module system. In this white paper,
we will describe the design and implementation decisions involved in constructing such a system, using a real-world example.

Background

By a module system, here we mean a collection of environment modules that have been curated in some way and that
provides a standard way for users to access their dependencies. Environment modules are way to modify a user’s environment
to include some preinstalled software. Users can issue commands like module load, module avail, and module list to
manipulate their environment, see what preinstalled software they can leverage, and see which modules they have already
loaded. Environment modules at the basic level are just a mechanism to set and manipulate environment and variables; this
allows the system to expose or hide pre-installed libraries. A module for a third-party library might set some environment
variables to let the user know where those libraries are located as well as append that path to LD_LIBRARY_PATH. Meanwhile,
an environment module for a utility would add the bin/ directory to PATH. When a user unloads a module then all the
environment variables that were set go back to being unset and any paths that were prepended to LD_LIBRARY_PATH and
PATH are removed from these variables. Here is an example of loading and unloading a python module:

$ which python
/usr/bin/python

$ module load python/3.7.3
$ which python
/home/projects/x86-64/python/3.7.3/bin/python

In short, when we talk about a module system, we are referring to a collection of software packages that have been created in
an intentional way to work together and are accessible using environment modules. In order to be most effective, a module
system should have certain characteristics which we shall discuss in the following section.

Design Considerations

Using a well-thought-out environment module system has some significant advantages to developer productivity. Projects can
greatly reduce build time so developers can see results much quicker because they do not have to build their dependencies
in addition to their project’s source code. This is especially pronounced in automated testing where it is common to build
completely from scratch. Another advantage is that such a system can standardize the programming environment across the
project. All the developers use the same version and configuration of the dependencies. Differences between two developers’
versions of the project are almost certainly due to code in the project itself, not from the environment. Once again, by
providing a common environment, such a module system can make reproducibility much easier between developers and
platforms.

https://collegeville.github.io/CW20/
mailto:jfrye@sandia.gov
www.sandia.gov
www.sandia.gov

Easy to Use

Perhaps the most important thing to consider when designing a module system is that it needs to be easy for the user to see
what is available and easy for the user to load a consistent set of software into their environment. This means that when they
do a module avail they see reasonable output that is organized in such a way that they can easily tell what is available to
them. I have seen many cases where modules are unorganized and follow no standard. This quickly becomes impossible to
navigate for users. The following is an example of something I see often and hopefully illustrates the point that this can
quickly become confusing:

openmpi/1.10
openmpi/1.10_manual
openmpi/1.10_update
openmpi/1.8
openmpi/1.8_intel-2018
openmpi/2.1.3

openmpi/2.1.3_gcc-4.9.3
openmpi/2.1.6_not_this_one
openmpi/2.1.6_with-hwloc
openmpi/2.1.6_with-pmix

Some of these give you detail about which compiler was used to build it, some of them give detail about some configure
options that were used, some have an English word or phrase, and some are just a version. I can wager a reasonable guess at
how they all differ but it is not entirely clear. Suppose I am new to this platform and I know I need openmpi 2 for my project
it is not clear which to choose or why.

Consistency

Another important factor to consider while designing a module system is consistency. I think of this in a few ways in the
context of modules. One is that all the modules in the system should behave in a similar well defined way that the users
can easily predict. For example you may want to set some environment variables when a module is loaded to point to
the install root of the package as well as where the libraries are in that install so a module for boost may set BOOST_ROOT
and BOOST_LIB_DIR. Consistency in this case is that when you create a module for hdf5, you set the environment variables
HDF5_ROOT and HDF5_LIB_DIR not HDF5_BASE and HDF5_LIBRARIES. It does not matter what you want to call the environment
variables but pick something that is easy for users to predict. The other aspect of consistency that is helpful is consistency
between platforms. Teams are expected to run on multiple platforms so as much as possible the modules systems should be
similar on each different platform. A familiar and easy to use interface to get dependencies will cut down on frustration and
increase developer productivity.

Implementation Decisions

Now we can delve into the challenges in realizing an effective solution for dependency management. There are many things to
consider when implementing a module system For example, maintainers can install similar versions of a package and rarely
have a strategy to deprecate them, which increases the maintenance burden and pollutes the system. However we will focus
on the particular issue of making it easy for a user to load consistent modules.

How to Communicate which Modules are Consistent with Each Other

In order to ensure that TPLs work together they usually need to be built with the same compiler, mpi, and sometimes
other dependencies. Suppose you are supporting 2 compilers, 2 mpis, and package “A” that needs mpi. You will need to
build package “A” 4 separate times (one for each compiler/mpi combination). To make things more concrete, let’s name the
compilers and mpis. For purposes of the example let’s say we are supporting gecc-7.2.0 and intel-19 with openmpi-3.0.0 and
openmpi-4.0.0 and package “A” at version 1.0.0. To build our package “A” we will build once with gcc-7.2.0 and openmpi-3.0.0,
once with gee-7.2.0 and openmpi-4.0.0, and so on.

gce-7.2.0 intel-19

— —

openmpi-3.0.0 built with gcc-7.2.0 openmpi-4.0.0 built with gcc-7.2.0 openmpi-3.0.0 built with Intel-19 openmpi-4.0.0 built with Intel-19

l | l |

Package A built with gcc-7.2.0 and openmpi-3.0.0 Package A built with gcc-7.2.0 and openmpi-4.0.0 Package A built with Intel-19 and openmpi-3.0.0 Package A built with Intel-19 and openmpi-4.0.0

How do you communicate to users which modules are compatible?

Use Long Module Names: One way this is done in a flat module system is to embed that information in the module name.
so the users would see 4 modules for package A:

A/1.0.0/gcc/7.2.0/0openmpi/3.0.0
A/1.0.0/gcc/7.2.0/0openmpi/4.0.0
A/1.0.0/intel/19.0.0/openmpi/3.0.0
A/1.0.0/intel/19.0.0/openmpi/4.0.0

The user is then expected to understand that “A/1.0.0/gcc/7.2.0/openmpi/3.0.0” means that if you “module load
A/1.0.0/gce/7.2.0/openmpi/3.0.0” you will get package “A” at version 1.0.0 added to your environment and that it will have
been built with gce-7.2.0 and openmpi-3.0.0. Of course, the example above only shows the modules for “A”. In this simple
example we would need all of the following modules available to users:

gcc/7.2.0

intel/19.0.0
openmpi/3.0.0/gcc/7.2.0
openmpi/3.0.0/intel/19.0.0
openmpi/4.0.0/gcc/7.2.0
openmpi/4.0.0/intel/19.0.0
A/1.0.0/gcc/7.2.0/0openmpi/3.0.0
A/1.0.0/gcc/7.2.0/0openmpi/4.0.0
A/1.0.0/intel/19.0.0/openmpi/3.0.0
A/1.0.0/intel/19.0.0/openmpi/4.0.0

In order to get a consistent set of dependencies a user then needs to:

module load gcc/7.2.0
module load openmpi/4.0.0/gcc/7.2.0
module load A/1.0.0/gcc/7.2.0/openmpi/4.0.0

making sure the compiler and MPI are consistent in what they load. This is obviously annoying and becomes tedious for users
once you have more than a couple supported packages.

Create Devpacks: One way to help is to create “devpacks”, where a devpack is a single module that loads other modules
known to be consistent, or it could also do all the work of putting the consistent set of software in a user’s environment in one
module. This makes it easy for users to load the right set of modules to be consistent but it adds to the clutter of seeing all
the modules at once.

Provide Smart Modules: Another approach is to have modules that query the environment and then set environment
variables and paths based on what has already been loaded. In this type of system, you would only have one module for
any given version of a package, for example boost/1.70.0, but the module would decide at load time which installation to
point to based on environment variables set by other modules. In this way, the number of modules displayed through module
avail is dramatically decreased but users can still see what software and versions are available through modules. One of the
largest strengths of this style is that it presents a nice easy to use interface for developers.

Hierarchical Modules: The final way to deal with this in my experience is to use LUA-based hierarchical modules. In this
approach when a user does a module avail the first time they only see compiler modules. After loading one of the compiler
modules, module avail will display a new set of modules that have all been built with the loaded compiler. There can be
multiple levels in the hierarchy, another common one is MPI. If this is the case then a user will see a new set of moduels
available after they load an mpi module. This ensures that the user loads a consistent set of modules but it is not obvious
exactly what is available on the system and the user needs to do some digging to find what they need.

Discussion

At Sandia we can find all of the above implementations on different on different projects. One in particular has been especially
impactful which is a smart module system where the installations and module files are shared across machines. These two
things combine to make an especially useful system that is easy to use and is widely available. As mentioned above, the smart
modules greatly reduce the clutter a user sees by deciding which installation to point to at load time based on what has
already been loaded. This system clearly presents what modules a user can load and is easy to use. By having one install that
is shared we can add software for customers just by installing in one place. Additionally, if defects are discovered we can
address them once, and the changes will propagate to all the other users.

Workstation

Workstation

Module System —\ /—P Workstation

modules and installations shared on the network

Install tree —/ \P Shared Project Resource

Cl Build Machine

Nightly Testing Machine

This module system is shared with roughly one hundred machines across dozens of projects. This has reduced the time that
developers spend trying to get a consistent working set of dependencies because individual developers no longer need to
maintain their own TPL stack. This has also proven valuable in getting new developers spun up faster. Using this module
system has served to standardize the dependency stack for projects that use it. Now developers are using the same environment
as each other and as the testing infrastructure. This had lead to productivity gains through increased reproducibility of
defects making them easier to resolve.

Conclusion

Scientific software projects often rely on a complex set of dependencies that can be very difficult to build and maintain.
Providing developers with a common infrastructure to access the dependencies they need in a consistent, easy-to-use way
can solve several problems that directly impact developer productivity. Such a system lessens the burden on developers
for maintaining the TPL stack, standardizes the environment with testing resources, increases reproducibility through
standardization, and allows developers to spend more time developing on their projects.

Acknowledgements

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the
paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Sandia
National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions
of Sandia, LL.C, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525.

SAND2020-6782 C

	Module Systems and Developer Productivity
	Introduction
	Background
	Design Considerations
	Easy to Use
	Consistency

	Implementation Decisions
	How to Communicate which Modules are Consistent with Each Other

	Discussion
	Conclusion
	Acknowledgements

