Software Integration Challenges

Todd Gamblin
Advanced Technology Office
Lawrence Livermore National Laboratory

tgamblin@lInl.gov

MuMMI: over 70 packages &

Conflicting subgraph

Figure 1: A particularly troublesome conflict in LLNL’s MuMMI code, with over 70 dependency libraries

1 INTRODUCTION

Component-based software design allows software devel-
opers to build increasingly complex systems, but software
complexity is reaching its limits. With the widespread avail-
ability of open-source libraries, the number of components
integrated into typical applications has exploded, and the in-
tegration problem has become more challenging. Integrating
tens or hundreds of components, or packages, together con-
sumes an increasing fraction of developers’ time. Package
managers offer a partial solution, and they have been rea-
sonably successful whiting siloed (single distribution, single
language, single compiler, etc.) ecosystems. Unfortunately,
in scientific computing, the ecosystem is far more diverse.
There is no one CPU or GPU architecture, OS, or compiler—
there are many. Complex programming environments, ma-
chine learning stacks, GPUs, and potentially other types of
accelerators must all be supported and integrated together,
but introducing these complexities makes it even harder to
assemble a software stack that works.

At a fundamental level, relationships among software
packages are not well understood. In most package man-
agement systems, a package may depend on another, but the
characteristics of that relationship are often not known or
specified beyond a simple version constraint. If A depends
on B, can A work with all versions of B? Specific ones? Can
A work with B on some platform that B does not support?
What if the two packages are built with different compilers
that use different OpenMP implementations? What if B is
built with special flags? Can we build a version of A that is
compatible with the OS’s version of B? More often than not,
developers don’t know the answers to these questions, and
they must simply try configurations until one works.

Collegeville Workshop 2020, July 21-23, 2020, Virtual Event

Determine
system library
configurations

Fix
Build code bugs/configs 05 update
based on errors

Application
breaks

Figure 2: The process of integrating libraries over time

opengl:
paths:
opengl@1.7.0: /usr
buildable: False
openglu:
paths:
openglu@l.3.1: /usr
buildable: False

Lock down which MPI we are using
mvapich2:
paths:
clang mvapich2
mvapich2@2.3%clang@9.0.0 arch=linux-rhel7-ivybridge: /usr/tce/packages/mvapich2/mvapich2-2.3-clang-9.0.0
gec mvapich2
mvapich2@2.3%gcc@8. 1.0 arch=linux-rhel7-ivybridge: /usr/tce/packages/mvapich2/mvapich2-2.3-gcc-8.1.0
intel mvapich2
mvapich2@2.3%intel@19.0.4 arch=linux-rhel7-ivybridge: /usr/tce/packages/mvapich2/mvapich2-2.3-intel-19.0.4
buildable: False

Figure 3: MuMMI developers pin the versions of
around 20 system packages

2 INTEGRATION COMPLEXITY

To understand the problem better it helps to look at an ac-
tual development workflow. Figure 1 shows part of LLNL’s
MuMMI code. MuMMI integrates molecular dynamics mod-
els, Al surrogate models, and other components to model
drugs, recently including potential treatments for COVID-19.
The code itself comprises over 70 packages. The team uses
the Spack [7] package manager to integrate them in a sin-
gle build. In the MuMMI deployment workflow 2. the team
first identifies dependencies they want to use on the host
machine, and they then write a configuration file that tells
Spack about these packages 3. They build their code with
these settings, fix any bugs that arise, and run. As shown in

Collegeville Workshop 2020, July 21-23, 2020, Virtual Event

the figure, there are many ways this can go wrong. For ex-
ample, the team frequently updates package versions to get
new features and functionality. While this may seem simple,
any update can cause cascading problems. For example, the
team once needed a newer version of the Keras package:

(1) Team “just” needed a new version of Keras,
(2) which needed a new version of Theano,

(3) which needed a new version of Numpy,

(4) which needed a newer version of OpenBLAS.

(5) Team was using system OpenBLAS, which was too old
(6) Team had to build many versions of OpenBLAS to find
one compatible with GROMACS, SciPy, and FAISS
(7) Finally, rebuilt the entire stack for ABI compatibility.

This is a complex, cascading issue involving incompat-
ibilities among 8 packages. Figure 1 shows the sub-graph
containing conflicting packages in red, both in and outside
of the 70+-package MuMMI code. Dealing with these types
of cascading issues is daunting. Debugging this particular
problem took 36 person-hours, and this is far from the most
serious problem the team has dealt with. The need for new
package versions arises frequently, causing similar pain. OS
updates are a constant source of frustration, as they change
package versions underneath the application software. De-
velopers must adjust their system configuration file (Figure 3)
and rebuild with each update. Incompatibilities between the
proprietary system PMI package (a dependency of MPI) and
the team’s builds cost hundreds of hours to find and fix.

In HPC, these issues have been called software collapse [8].
However, dependency problems are not unique to scientific
computing. A study of 26.6 million software builds performed
by 18,000 developers at Google showed that 50-60% of build
issues (for both C++ and Java) were dependency-related (Fig-
ure 4). A similar study of 491 developers at ING showed
that dependencies were the single largest contributing fac-
tor to release delays, regardless of whether the teams made
frequent or infrequent releases (Figure 5). A further study
showed that developers avoid critical upgrades due to costs
associated with dependencies [10].

3 EXISTING STRATEGIES

Integrating dependencies is fundamental to modern software
development, so you might think that there would be good,
established practices for dealing with it. Unfortunately, not
even Google has answers for this. In their 2020 book Software
Engineering at Google [14], Winters et al. call dependency
management “one of the least understood and most chal-
lenging problems in software engineering,” and they say “we
definitely cannot claim to have all the answers here; If we
could, we wouldn’t be calling this one of the most important
problems in software engineering.” While they do not claim

Todd Gamblin

100%
90%
80%
70%
60%

50%
40%
n
30% it
Java
20%
10% .
0% ||

Category

Percentage of Build Errors

Figure 4: Types of errors in 26.6 million builds at
Google [12]

dependencies

infrastructure

general testing
security testing
procedure

bugs

scheduling
requirements
unaligned priorities
quality assurance
code review
lacking resources

poor system design O Non-rapid Releases

) . = i
miscommunication Rapid Releases

code integration

T T 1
10 15 20

o
3

Percentage of Responses

Figure 5: Factors perceived to cause release delays
among 491 developers at ING [9]

to have a complete solution, they do outline some of the
existing practices and their trade-offs. Figure ?? shows them.

3.1 Bundled distribution.

The most common strategy is to use a curated, bundled soft-
ware distribution. The curators pick a set of versions and
package configurations, ensure they work together, and push
them out. The model works—it’s the one nearly every Linux
distribution uses, as well as projects like xSDK or E4S (ECP’s
stack). The disadvantage is that it is confining. To ensure
compatibility, the versions are mostly fixed, so teams cannot
easily choose other versions as the MuMMI team needed to.

Software Integration Challenges

Linux distributions (Red Hat, Debian)
E4S, xSDK, Anaconda
Spack with locked versions

Spack
NPM, Cargo, Go

Curate a large set of mutually compatible
dependencies

Stability (if software is included)

Works in theory

Infrequent updates
High packaging/curation effort
Lack of flexibility

Use uniform version convention,
Solve for compatible set

Frequent updates
Only relies on local information

Versions are coarse
Developers over-constrain/over-promise
Errors start to dominate at scale

Collegeville Workshop 2020, July 21-23, 2020, Virtual Event

Bundled Distribution

Google, Facebook, Twitter

Most language dependency managers

Everything in one repository,
Developers test changes with all dependents

Frequent updates
Stability, consistency
All changes tested

Doesn’t scale beyond a single organization
High computational cost of testing
Lack of flexibility (typically just one target env.)

Figure 6: Existing strategies for managing dependencies [14]

3.2 Semantic Versioning.

The second strategy, which most language-specific package
managers are moving towards (npm for Javascript, Cargo
for Rust, Ruby Gems, and many others), is to use semantic
versioning. Systems like this use the version and potentially
other information (feature flags, etc.) as a proxy for compati-
bility. SAT solvers are used to find valid configurations from
large package databases. Unfortunately, studies have shown
that version compatibility metadata is provided by humans
and that it is frequently inaccurate [4, 6], and it does not
work well at large scale (where the likelihood of a breaking
change in a stack increases). In HPC, where packages can
be built in many different ways and theree is more than just
version information to consider, compatibility is even harder
to assess accurately. Spack [7] uses this approach, but it fre-
quently runs into limitations with its current compatibility
metadata. It does not currently model enough build param-
eters to cover all aspects of binary compatibility, so builds
can break if users create too many new configurations.

3.3 Live at Head.

The last strategy, and the one currently used at Google and
other large tech companies, is to “live at head”. In this model,
all changes to software and to configurations are checked
into a single repository, and every change is tested before
it is merges into the single configuration. Interestingly, this
model puts more responsibility on individual package de-
velopers to test their changes because any change can be
checked against any package that uses it. While this ensures
a tested stack, it has two main drawbacks. First, like dis-
tributions, it limits version flexibility — you must use what
is in the repository. Second, the resource requirements to
test every change this much in DOE are huge. Google has
one main environment and one tool chain where their pro-
duction software runs, but DOE has tens or hundreds. The

combinatorial burden to do this everywhere seems too great,
at least without careful planning. Finally, this approach re-
quires a single repository, at least as currently implemented.
Scientific software lives in many different repositories and
spans communities, and the level of coordination and trust
required for a single large repository is not there.

4 ISOLATED COMMUNITIES

Currently, each ecosystem, package manager, or other sep-
arately curated body of software tends to develop its own
preferences and defaults. Developers who add packages to se-
mantic versioning-based systems tend to lock their versions
to values they know will work for themselves. Distributions
make assumptions about how their code will be compiled,
what environment it will build in, what versions are pro-
vided, etc. Each project ends up self-consistent, but there
are no guarantees about compatibility or versioning across
distributions. Ultimately, this means that we cannot easily
leverage effort from different packaging systems. The world
must be reinvented again and again, but differently, for each
use case. If we try to combine packages, they will either not
work, or conflict due to overly narrow constraints (Figure 7).

5 RECOMMENDATIONS

HPC needs ways to better reuse software, and the main ob-
stacle to doing that is insufficient compatibility information
for binaries. HPC users need flexibility to build their own
versions and configurations of software, so it is likely that
the distribution model and live-at-head will not work well
for HPC. The versioning model of packaging, however, is
currently limited by what humans can specify. To solve this,
we make three major recommendations below.

Collegeville Workshop 2020, July 21-23, 2020, Virtual Event

Conduit

Community

Package
Repository

Figure 7: Mixing is hard: if all projects mandate spe-
cific versions/configurations, conflicts will eventually
arise that prevent all packages from building.

5.1 Compatibility modeling

If we want to enable greater code reuse and better reasoning
about compatibility, we need better compatibility models. For
any binary, we should be able to determine whether it can
be linked with another, i.e. whether its ABI is compatible
with another. To do this we need much deeper information
about language and parallel runtime libraries, types that used
by particular binaries, etc. DWARF provides much of this
information but is too heavyweight to include in all binaries.
We need better ways to embed this type of information in
ELF and other binary formats to enable binary reuse after
compilation.

5.2 Binary analysis

We need analysis that can inspect existing binaries and deter-
mine compatibility information of interest. If successful, this
would allow us to more easily reuse system libraries (as we
could look at their interfaces and know whether they were
compatible with what we are trying to build. Again, we need
better information in the binaries to accomplish this.

5.3 Better solving

We need ways to automate the reasoning behind software
integration and builds. SAT solvers of current package man-
agers can find valid builds, but they use human-generated
version information to do this, and they cannot make guaran-
tees about ABL. We need tools that can solve on the interface
(ABI) information directly, and that can find not just a valid
configuration from a database of packages, but one that is
sound and guaranteed to link. Prior work has shown that
finding compatible versions is NP-complete [1-3, 11, 13], and
that modern dependency networks are very complex [5], but
there have also been tremendous advances in solver tech-
nology over the past decade or two. The time is right to

Todd Gamblin

start looking at building software as a true reasoning and
quality optimization problem instead of leaving this to the
humans. With the right set of solvers, we could find not only
compatible package combinations, but optimal ones.

REFERENCES

[1] P. Abate, R. Di Cosmo, R. Treinen, and S. Zacchiroli. Dependency
solving: a separate concern in component evolution management.
Journal of Systems and Software, 85(10):2228-2240, 2012.

[2] R.D. Cosmo. EDOS deliverable WP2-D2.1: Report on Formal Man-
agement of Software Dependencies. Technical report, INRIA, May 15
2005. hal-00697463.

[3] R. Cox. Version SAT. https://research.swtch.com/version-sat, Decem-
ber 13 2016.

[4] A.Decan and T. Mens. What do package dependencies tell us about
semantic versioning? IEEE Transactions on Software Engineering, 2019.

[5] A.Decan, T. Mens, and M. Claes. On the topology of package de-

pendency networks: A comparison of three programming language

ecosystems. In Proccedings of the 10th European Conference on Soft-

ware Architecture Workshops, ECSAW 16, New York, NY, USA, 2016.

Association for Computing Machinery.

J. Dietrich, D. J. Pearce, J. Stringer, A. Tahir, and K. Blincoe. Depen-

dency versioning in the wild. In Proceedings of the 16th International

Conference on Mining Software Repositories, MSR ’19, pages 349-359.

IEEE Press, 2019.

T. Gamblin, M. P. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.

de Supinski, and W. S. Futral. The Spack Package Manager: Bringing

order to HPC software chaos. In Supercomputing 2015 (SC’15), Austin,

Texas, November 15-20 2015. LLNL-CONF-669890.

K. Hinsen. Dealing with software collapse. Computing in Science &

Engineering, 21(3):104-108, 2019.

E. Kula, A. Rastogi, H. Huijgens, A. van Deursen, and G. Gousios.

Releasing fast and slow: an exploratory case study at ING. In M. Dumas,

D. Pfahl, S. Apel, and A. Russo, editors, Proceedings of the ACM Joint

Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019,

Tallinn, Estonia, August 26-30, 2019, pages 785-795. ACM, 2019.

[10] R.G.Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue. Do developers
update their library dependencies? Empirical Software Engineering,
23(1):384-417, 2018.

[11] F. Mancinelli, J. Boender, R. di Cosmo, J. Vouillon, B. Durak, X. Leroy,
and R. Treinen. Managing the complexity of large free and open source
package-based software distributions. In 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE’06), pages 199-208,
2006.

[12] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge. Pro-
grammers’ build errors: a case study (at google). In Proceedings of the
36th International Conference on Software Engineering, pages 724-734,
2014.

[13] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner. Opium: Optimal pack-
age install/uninstall manager. In Proceedings of the 29th International
Conference on Software Engineering, ICSE *07, pages 178-188, USA,
2007. IEEE Computer Society.

[14] T. Winters, T. Manshreck, and H. Wright. Software Engineering at
Google: Lessons Learned from Programming Over Time. O’Reilly Media,
2020.

6

—

[7

—

[8

[t

[9

—

	1 Introduction
	2 Integration complexity
	3 Existing Strategies
	3.1 Bundled distribution.
	3.2 Semantic Versioning.
	3.3 Live at Head.

	4 Isolated communities
	5 Recommendations
	5.1 Compatibility modeling
	5.2 Binary analysis
	5.3 Better solving

	References

