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MuMMI: over 70 packages Conflicting subgraph

Figure 1: A particularly troublesome conflict in LLNL’s MuMMI code, with over 70 dependency libraries

1 INTRODUCTION
Component-based software design allows software devel-
opers to build increasingly complex systems, but software
complexity is reaching its limits. With the widespread avail-
ability of open-source libraries, the number of components
integrated into typical applications has exploded, and the in-
tegration problem has become more challenging. Integrating
tens or hundreds of components, or packages, together con-
sumes an increasing fraction of developers’ time. Package
managers offer a partial solution, and they have been rea-
sonably successful whiting siloed (single distribution, single
language, single compiler, etc.) ecosystems. Unfortunately,
in scientific computing, the ecosystem is far more diverse.
There is no one CPU or GPU architecture, OS, or compiler—
there are many. Complex programming environments, ma-
chine learning stacks, GPUs, and potentially other types of
accelerators must all be supported and integrated together,
but introducing these complexities makes it even harder to
assemble a software stack that works.

At a fundamental level, relationships among software
packages are not well understood. In most package man-
agement systems, a package may depend on another, but the
characteristics of that relationship are often not known or
specified beyond a simple version constraint. If A depends
on B, can A work with all versions of B? Specific ones? Can
A work with B on some platform that B does not support?
What if the two packages are built with different compilers
that use different OpenMP implementations? What if B is
built with special flags? Can we build a version of A that is
compatible with the OS’s version of B? More often than not,
developers don’t know the answers to these questions, and
they must simply try configurations until one works.
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Figure 2: The process of integrating libraries over time

Figure 3: MuMMI developers pin the versions of
around 20 system packages

2 INTEGRATION COMPLEXITY
To understand the problem better it helps to look at an ac-
tual development workflow. Figure 1 shows part of LLNL’s
MuMMI code. MuMMI integrates molecular dynamics mod-
els, AI surrogate models, and other components to model
drugs, recently including potential treatments for COVID-19.
The code itself comprises over 70 packages. The team uses
the Spack [7] package manager to integrate them in a sin-
gle build. In the MuMMI deployment workflow 2. the team
first identifies dependencies they want to use on the host
machine, and they then write a configuration file that tells
Spack about these packages 3. They build their code with
these settings, fix any bugs that arise, and run. As shown in
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the figure, there are many ways this can go wrong. For ex-
ample, the team frequently updates package versions to get
new features and functionality. While this may seem simple,
any update can cause cascading problems. For example, the
team once needed a newer version of the Keras package:

(1) Team “just” needed a new version of Keras,
(2) which needed a new version of Theano,
(3) which needed a new version of Numpy,
(4) which needed a newer version of OpenBLAS.
(5) Team was using system OpenBLAS, which was too old
(6) Team had to build many versions of OpenBLAS to find

one compatible with GROMACS, SciPy, and FAISS
(7) Finally, rebuilt the entire stack for ABI compatibility.

This is a complex, cascading issue involving incompat-
ibilities among 8 packages. Figure 1 shows the sub-graph
containing conflicting packages in red, both in and outside
of the 70+-package MuMMI code. Dealing with these types
of cascading issues is daunting. Debugging this particular
problem took 36 person-hours, and this is far from the most
serious problem the team has dealt with. The need for new
package versions arises frequently, causing similar pain. OS
updates are a constant source of frustration, as they change
package versions underneath the application software. De-
velopers must adjust their system configuration file (Figure 3)
and rebuild with each update. Incompatibilities between the
proprietary system PMI package (a dependency of MPI) and
the team’s builds cost hundreds of hours to find and fix.

In HPC, these issues have been called software collapse [8].
However, dependency problems are not unique to scientific
computing. A study of 26.6 million software builds performed
by 18,000 developers at Google showed that 50-60% of build
issues (for both C++ and Java) were dependency-related (Fig-
ure 4). A similar study of 491 developers at ING showed
that dependencies were the single largest contributing fac-
tor to release delays, regardless of whether the teams made
frequent or infrequent releases (Figure 5). A further study
showed that developers avoid critical upgrades due to costs
associated with dependencies [10].

3 EXISTING STRATEGIES
Integrating dependencies is fundamental to modern software
development, so you might think that there would be good,
established practices for dealing with it. Unfortunately, not
even Google has answers for this. In their 2020 book Software
Engineering at Google [14], Winters et al. call dependency
management “one of the least understood and most chal-
lenging problems in software engineering,” and they say “we
definitely cannot claim to have all the answers here; If we
could, we wouldn’t be calling this one of the most important
problems in software engineering.” While they do not claim
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Figure 5: Reasons for build errors

code components. For example, name resolution errors or
missing file errors belong to this category. However, other
errors, such as when produced by mistyping a variable name,
also fall into this category as they have the same underlying
compiler error kind. Type mismatch includes type errors.
For example, errors occurring when a variable is assigned
to an incompatible type or when a function is called with
wrong argument types belong to this category. Syntax rep-
resents simple syntax errors such as omitting a parenthesis
or includes errors that occur when the compiler expects an
expression but is given something else. Semantic includes
errors related to class access rule violations or not imple-
menting abstract methods. We classified the remaining er-
rors into Other. Undefined virtual destructors, redefined
names, or uncaught exceptions belong to this category.

The percentage of error messages in each category is shown
in Figure 6. Dependency-related errors are the most com-
mon error type for both C++ (52.68%) and Java (64.71%).2

We also noticed that there are more syntax errors in our data
set for C++; this is again consistent with the greater IDE
usage for Java.

4.3 RQ3: How long does it take to fix builds?
To measure how long it takes to fix build errors, we col-

lected resolution time data as described in Section 3.3. Res-
olution time measures the time interval between the com-
pletion of a first failed build and the start of the next suc-
cessful build. Resolution time may not measure the time

2Note that we may classify mistyping a variable name as
a dependency error when the compiler produces the same
error message for both cases. However, even if we assume
3/4 of cant.resolve errors are the result of typos (as in the
sample from Table 4) and remove them from this category,
dependency errors are still the most common error category
for Java.
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Figure 6: Build error category (joins C++ and Java
data)

that the developer actually spent addressing the problem
and waiting for compiles to complete; it is possible that the
developer switched to a di↵erent task or was away from her
desk during some error fixing sessions we logged. To re-
move extreme cases (e.g., the developer went home for the
day), we omitted any builds in which the resolution time
was greater than twelve hours. When multiple error kinds
are resolved at once, it is not easy to discriminate resolution
time per error kind. Dividing the total resolution time by
the number of error kinds is one possible approach but this
introduces further imprecision to the resolution time. In-
stead, we constrained our analysis to failing builds with one
kind of error message. This filter retains 60% of the Java
builds and 40% of the C++ builds, for a total of more than
10 million builds.
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Figure 4: Types of errors in 26.6 million builds at
Google [12]
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general and for security), following mandatory procedures (such
as for quality assurance) prior to every release, �xing bugs, and
scheduling the release, including planning e�ort and resources.
Non-rapid teams experience similar issues. Similar to rapid teams,
non-rapid teams report to be largely in�uenced by dependencies.
The other factors which were considered important by at least 10%
of the respondents are scheduling, procedure, and security testing.

Further analysis of the most prominent factor perceived to delay
rapid and non-rapid teams (dependency) explained the sources of
dependency in the organization. Developers, in their open-ended re-
sponses, attributed two types of dependencies to cause delay in their
releases. At a technical level, developers have to deal with cross-
project dependencies. Teams at ING work with project-speci�c
repositories and share codebases across teams within one applica-
tion. At a work�ow level, developers mention to be hindered by
task dependencies. Inconsistent schedules and unaligned priorities
are perceived to cause delays in dependent teams. Many develop-
ers seem to struggle with estimating the impact of both types of
dependencies in the release planning.

Another factor which is perceived to prominently a�ect rapid
and non-rapid teams is security testing. For rapid teams, developers
report that security tests are almost always delayed because of an
unstable acceptance environment or missing release notes. They
further add that any software release needs to pass the required
security penetration test and secure code review, which are centrally
performed by the CIO Security department at ING. Respondents
report that they often have to delay releases because of “delayed
penetration tests" [r66], “unavailability of security teams" [r133] and
“acting upon their �ndings" [r86].

Rapid teams also report delays related to infrastructure and
testing (in general). These factors do not feature in the top men-
tioned factors in�uencing non-rapid teams. Regarding infrastruc-
ture, respondents mention that issues in infrastructure are related
to the failure of tools responsible for automation (such as Jenkins

Figure 5: Factors perceived to cause delays in rapid and non-rapid
teams

and Nolio) and sluggishness in the pipeline caused by network or
proxy issues. Respondent [r168] states that “Without the autonomy
and tools to �x itself, we have to report these issues to the teams of
CDaas and wait for them to be solved". Regarding testing, developers
mention that the unavailability or instability of the test environ-
ment induces delay in releasing software. Respondent [r11] states
that “In that case we want to be sure it was the environment and not
the code we wish to release. Postponing is then a viable option”.

Further analysis of the survey responses showed that the rapidly
released mobile applications and APIs that are least often on time
(found in RQ1) are hindered by dependencies and testing. Many
mobile app developers report to experience delay due to depen-
dencies on a variety of mobile technologies and limited testing
support for mobile-speci�c test scenarios. API developers report
to be delayed by dependencies in back-end services and expensive
integration testing.

Dependencies, especially in infrastructure, and testing are
the top mentioned delay factors in rapid releases.

4.3 RQ3: How do rapid release cycles a�ect
code quality?

For this research question, we considered 202 survey responses from
developers in rapid teams. We removed 165 non-rapid respondents
next to 94 rapid respondents who did not identify as a developer at
ING.

4.3.1 Developers’ Perceptions. Developers have mixed opinions
on how RRs a�ect code quality. A distribution of the e�ect of RRs
(improve, degrade, no e�ect) on di�erent factors related to code as
perceived by developers is shown in Figure 6. It shows responses
suggesting improvements in quality in green, degradation in quality
in red and no e�ect in grey.

Quality improvement. A majority of developers perceive that
the small changes in RRs make the code easier to review, positively
impacting the refactoring e�ort (e.g., “It gets easier to review the code
and address technical debt" [r16]). Developers also report that the
small deliverables simplify the process of integrating and merging
code changes, and they lower the impact of errors in development.
A few developers mention that RRs motivate them to write modular
and understandable code.

A large number of developers mention the bene�ts of rapid
feedback in RRs. Feedback from issue trackers and the end user
allows teams to continuously refactor and improve their code qual-
ity based on unforeseen errors and incidents in production. Rapid
user feedback is perceived to lead to a greater focus of developers
on customer value and software reliability (e.g., “[RRs] give more
insight in bugs and issues after releasing. [They] enable us to respond
more quickly to user requirements" [r232], “We can better monitor
the feedback of the customers which increased [with RRs]." [r130]).
This enables teams to deliver customer value at a faster and more
steady pace (e.g., “[With RRs] we can provide more value more often
to end users." [r65], “Features are delivered at a more steady pace"
[r16]).
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Figure 5: Factors perceived to cause release delays
among 491 developers at ING [9]

to have a complete solution, they do outline some of the
existing practices and their trade-offs. Figure ?? shows them.

3.1 Bundled distribution.
The most common strategy is to use a curated, bundled soft-
ware distribution. The curators pick a set of versions and
package configurations, ensure they work together, and push
them out. The model works—it’s the one nearly every Linux
distribution uses, as well as projects like xSDK or E4S (ECP’s
stack). The disadvantage is that it is confining. To ensure
compatibility, the versions are mostly fixed, so teams cannot
easily choose other versions as the MuMMI team needed to.
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Bundled Distribution Semantic Versioning Live at Head
Examples Linux distributions (Red Hat, Debian)

E4S, xSDK, Anaconda
Spack with locked versions

Spack
NPM, Cargo, Go
Most language dependency managers

Google, Facebook, Twitter

Idea Curate a large set of mutually compatible 
dependencies

Use uniform version convention,
Solve for compatible set

Everything in one repository,
Developers test changes with all dependents

Pros Stability (if software is included) Frequent updates
Only relies on local information
Works in theory

Frequent updates
Stability, consistency
All changes tested

Cons Infrequent updates
High packaging/curation effort
Lack of flexibility

Versions are coarse
Developers over-constrain/over-promise
Errors start to dominate at scale

Doesn’t scale beyond a single organization
High computational cost of testing
Lack of flexibility (typically just one target env.)

Figure 6: Existing strategies for managing dependencies [14]

3.2 Semantic Versioning.
The second strategy, which most language-specific package
managers are moving towards (npm for Javascript, Cargo
for Rust, Ruby Gems, and many others), is to use semantic
versioning. Systems like this use the version and potentially
other information (feature flags, etc.) as a proxy for compati-
bility. SAT solvers are used to find valid configurations from
large package databases. Unfortunately, studies have shown
that version compatibility metadata is provided by humans
and that it is frequently inaccurate [4, 6], and it does not
work well at large scale (where the likelihood of a breaking
change in a stack increases). In HPC, where packages can
be built in many different ways and theree is more than just
version information to consider, compatibility is even harder
to assess accurately. Spack [7] uses this approach, but it fre-
quently runs into limitations with its current compatibility
metadata. It does not currently model enough build param-
eters to cover all aspects of binary compatibility, so builds
can break if users create too many new configurations.

3.3 Live at Head.
The last strategy, and the one currently used at Google and
other large tech companies, is to “live at head”. In this model,
all changes to software and to configurations are checked
into a single repository, and every change is tested before
it is merges into the single configuration. Interestingly, this
model puts more responsibility on individual package de-
velopers to test their changes because any change can be
checked against any package that uses it. While this ensures
a tested stack, it has two main drawbacks. First, like dis-
tributions, it limits version flexibility – you must use what
is in the repository. Second, the resource requirements to
test every change this much in DOE are huge. Google has
one main environment and one tool chain where their pro-
duction software runs, but DOE has tens or hundreds. The

combinatorial burden to do this everywhere seems too great,
at least without careful planning. Finally, this approach re-
quires a single repository, at least as currently implemented.
Scientific software lives in many different repositories and
spans communities, and the level of coordination and trust
required for a single large repository is not there.

4 ISOLATED COMMUNITIES
Currently, each ecosystem, package manager, or other sep-
arately curated body of software tends to develop its own
preferences and defaults. Developers who add packages to se-
mantic versioning-based systems tend to lock their versions
to values they know will work for themselves. Distributions
make assumptions about how their code will be compiled,
what environment it will build in, what versions are pro-
vided, etc. Each project ends up self-consistent, but there
are no guarantees about compatibility or versioning across
distributions. Ultimately, this means that we cannot easily
leverage effort from different packaging systems. The world
must be reinvented again and again, but differently, for each
use case. If we try to combine packages, they will either not
work, or conflict due to overly narrow constraints (Figure 7).

5 RECOMMENDATIONS
HPC needs ways to better reuse software, and the main ob-
stacle to doing that is insufficient compatibility information
for binaries. HPC users need flexibility to build their own
versions and configurations of software, so it is likely that
the distribution model and live-at-head will not work well
for HPC. The versioning model of packaging, however, is
currently limited by what humans can specify. To solve this,
we make three major recommendations below.
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Figure 7: Mixing is hard: if all projects mandate spe-
cific versions/configurations, conflicts will eventually
arise that prevent all packages from building.

5.1 Compatibility modeling
If we want to enable greater code reuse and better reasoning
about compatibility, we need better compatibility models. For
any binary, we should be able to determine whether it can
be linked with another, i.e. whether its ABI is compatible
with another. To do this we need much deeper information
about language and parallel runtime libraries, types that used
by particular binaries, etc. DWARF provides much of this
information but is too heavyweight to include in all binaries.
We need better ways to embed this type of information in
ELF and other binary formats to enable binary reuse after
compilation.

5.2 Binary analysis
We need analysis that can inspect existing binaries and deter-
mine compatibility information of interest. If successful, this
would allow us to more easily reuse system libraries (as we
could look at their interfaces and know whether they were
compatible with what we are trying to build. Again, we need
better information in the binaries to accomplish this.

5.3 Better solving
We need ways to automate the reasoning behind software
integration and builds. SAT solvers of current package man-
agers can find valid builds, but they use human-generated
version information to do this, and they cannot make guaran-
tees about ABI. We need tools that can solve on the interface
(ABI) information directly, and that can find not just a valid
configuration from a database of packages, but one that is
sound and guaranteed to link. Prior work has shown that
finding compatible versions is NP-complete [1–3, 11, 13], and
that modern dependency networks are very complex [5], but
there have also been tremendous advances in solver tech-
nology over the past decade or two. The time is right to

start looking at building software as a true reasoning and
quality optimization problem instead of leaving this to the
humans. With the right set of solvers, we could find not only
compatible package combinations, but optimal ones.
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