
Working with Multiple Package Managers
A whitepaper to Collegeville 2020, articulating impediments, challenges, opportunities or potential solutions to developer productivity for scientific software.

June 30, 2020

Axel Huebl
ATAP Division

Lawrence Berkeley National Laboratory
Berkeley (CA), U.S.A.

axelhuebl@lbl.gov

Abstract—User-level package managers become increasingly
popular productivity tools for end-users and developers alike.
While most package management solutions are in active de-
velopment and some try to reach across islands of individual
programming languages and communities - plenty of room
persists for choosing one individual solution over another in
daily tasks. Consequently, many software maintainers decide
to meet potential recipients (users and developers) half way
by supporting multiple solutions themselves. This whitepaper
demonstrates a potential workflow for efficient usage of multiple,
user-level package managers and how to avoid common pitfalls.

Index Terms—software maintenance, software reusability, sus-
tainable development, productivity

I. INTRODUCTION

The vast majority of software packages that computational
scientists and engineers directly interact with can be installed
and executed with the permissions of regular user accounts.
Such software is developed at various locations around the
world and might release new versions rapidly, compared to
traditional software release cycles. Consequently, package
management software that automates tedious installation steps,
tracks installed versions, finds compatible solutions and updates
packages, are popular with developers and end-users alike.

These so-called user-level package managers are often
designed with specific audiences and workflows in mind, some
provide software for specific programming languages while
others try to provide a more language-agnostic experience. As
new developers usually grow into one community (such as
Python and data science) or another, they will get in touch
with at least one of those package management solutions. As
their experience grows, the influence and interaction between
libraries (from various sources) increases and so does the
demand for flexible package management solutions.

At this point, reporting from our subjective experience, many
developers and users find themselves confused with typical
pitfalls when switching between package managers. This white
paper aims to provide a few simple guidelines for coordinating
an installation of multiple modern package managers.

Supported by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of two U.S. Department of Energy organizations (Office of Science and
the National Nuclear Security Administration).

II. CHOICE OF PACKAGE MANAGER

Unfortunately, an overview and fair comparison of today’s
existing user-level package managers is infeasible for the scope
of this work. Instead, we exemplify a few popular solutions
and rethink workflows and potential motivation when choosing
a package manager.

A few common criteria that people evaluate their package
managers against are ease of use, the provided number of
(working) packages for a problem set and, especially important
in automated workflows such as continuous integration, time to
installed solution. Mixed with background and experience,
the choice for one package manager or another is done
by the ”downstream” consumer of a software product. As
software maintainers (”upstream”), once can guide this choice
by providing direct support for modern solutions. Yet in the end,
software packaging and usage is a process of communication,
management of expectations and maintainability for individual
communities.

A. End-User Objectives

An end-user of a software project, which shall be herein
defined as a person that uses software such as an application
or framework - but does not extend it, is primarily interested in
a working solution. In some but not all cases, optimal runtime
performance of an installed software package can be relevant.
Yet in many other use cases performance is secondary compared
to other objectives, such as correctness of solution, specific
functionality, flexibility, etc.

If one finds oneself in the position of an end-user, we found
the following approach productive. One can simplify computing
workflows by keeping individual aspects separate with respect
to software environments. For example, building a large-scale,
parallel Fortran/C++ simulation stack can be managed within
a software environment provided by a package manager. Post-
processing workflows, such as analyzing and plotting data
with Python packages, do not need to be solved within an
environment that includes the aforementioned simulation stack.
Consequently, using a differing software environments or even
completely different package managers can be adequate. This is
also of practical relevance, since in most cases a fully consistent

https://orcid.org/0000-0003-1943-7141


solution to even those two workflows does not exist, e.g. due to
conflicting constrains and limitations in some software packages
to abstract and hide non-transitive dependencies.

B. Developer Objectives

A potentially beneficial mindset is to imagine software
developers and maintainers to some extend as power-users.
As (power-)users, there is no reason to spend significantly
more time and effort for a software environment setup than the
time and effort spent by end-users. This viewpoint is usually
also appropriate in computational sciences: a domains scientist
might use an existing software package first, considers it useful
and then decides to modify and improve it to their needs.

Developer workflows have therefore the same basic require-
ments as users. Furthermore, developers might build software
with various feature combinations, need to debug for correctness
and performance, need to modify the installed solution, combine
it with further software, often need to link against application
binary interfaces (ABI), etc..

At this point, many people realize that some package man-
agers describe one or the other aspect better than others. Some
package managers are solely end-user focused, others expect
significant additional hops for developers, again others manage
both classes of objectives well but are slow to install a software
environment solution. Efficient developers might cherry-pick
one or another user-level package manager depending on the
workflow at hand. For the rest of this document, we will focus
on workflows relevant to macOS/Linux.

III. INTERPLAY

Generally speaking, mixing user-level package managers can
quickly generate complexities that lead to unstable software
environments. This is unfortunate, since users of package
management software experience those the moment they install
such a product.

The reasons for this outcome are manifold and often rooted
in missing isolation. For example, some solutions provide their
own set of compilers, specific flags and standard libraries,
bootstrapping all software (e.g. conda and the conda-forge
respositories [1]), while others build on system compilers
and vendor-deployed ”userland” libraries (e.g. Homebrew [2]),
while again others bootstrap the whole software stack from
any compiler and standard library onward (e.g. Spack [3]).

Some package managers support registering externally
provided dependencies of pre-installed software. While this
is a valuable functionality in certain use cases, e.g. on HPC
systems with highly tuned system-provided software or in well-
controlled continuous integration environments, this generally
complicates the situation by putting the responsibility to track
those dependencies back on the user of package management
software.

As in the previous section, it is potentially best to use
the management tool that can get a certain aspect of a
workflow done at once (see mentioned examples above). In
particular, most user-level package managers expose their
installed packages by setting environment variables, such

as compilers hints (CC, CXX), tools (PATH, ...) and libraries
(CMAKE PREFIX PATH, LD LIBRARY PATH, PYTHONPATH, ...).
Avoiding ”activation” of multiple user-level package managers
at the same time avoids most of the problems to begin with.

IV. A PRACTICAL EXAMPLE

As a practical example, one can log into the same computing
machine multiple times in parallel by just using multiple
terminals. With each terminal, one executes one workflow
with one software environment and another, potentially even
related workflow, with another environment.

Activation time of a user-level package manager, especially
when written in a scripting language such as Python, can
be significant (multiple seconds). As this activation occurs
on every login and every newly opened terminal, removing
auto-activation lines in .bashrc/.profile files in one’s $HOME
directory is beneficial.

A. A Subjective Selection of Package Managers

Taking the conda [1] package manager as an example, one
should avoid the command conda activate that triggers
conda init. Unlike other package managers that only try
to ”install” themselves into the aforementioned files once,
conda will re-try this on those commands and load its base
environment in every new terminal. A simple source activate
provides the same functionality.

In Python, the popular Python Package Installer (pip)
[4] is not (yet) a package and dependency manager, but
actually a mere package installer (as the name suggests)
without sophisticated environment solution capabilities. Pip
installed software can be isolated well by placing it in virtual
environments [5]. Installing pip software on top of a conda
environment (or other package managers) often works for
pure Python packages, given that one does not change the
”parent” software environment anymore (including updates)
after installing anything with pip.

Brew [2] is a popular package manager on macOS that also
runs on Linux. Most of its popularity is gained fast install
of pre-compiled packages. It reserves itself the system-wide
/usr/local directory for linking active packages,1 which inter-
feres with other package managers. (brew unlink <formula>
deactivates packages.) Compiler support is limited to the system
compiler and selected versions of GCC (sometimes mixed).

Spack [3] is a popular package manager in high-performance
computing and very flexible for developer workflows. The
Spack project is a comparatively young, yet already provides
support for features such as binary-variants, solving and
tracking of compatible software, micro-architecture tuning, etc.
to name a few features. Its rapid development process poses
a challenge for generation and delivery of binary artifacts,
which results as of today in long installation times due to
frequent recompilation from source. Nonetheless, continuously
generated binary caches are planned and/or near completion.

1From a brew perspective, this is a convenient choice to avoid binary
relocation issues between paths on builder and user machines.



The programming language Rust [6] provides related tooling
and package management as part of its core functionality.
We list it here as another example of user-level package
management.

Last but not least, we will add an example on the Emscripten
SDK [7], which is not a package manager but a relatively
complex compiler framework for compiling C/C++ code to
WebAssembly.

B. Manually Activating Package Managers

As motivated earlier, manual activation of user-level package
managers can be beneficial for explicit control of environment
compatibility in complex computing and development work-
flows.

In the below listing, all user-level package managers were
manually installed according to their documentations into
directories below $HOME/src. We write a simple Bash script
$HOME/bin/impl-activate-env with the following logic:

1 case "${1}" in
2 conda)
3 export PATH="$HOME/src/miniconda3/bin:${PATH}"
4 conda_env=${2:-base}
5 source activate ${conda_env}
6 if [ "${conda_env}" == "base" ]; then
7 conda info --envs
8 echo "Activate via: \"conda activate <env>\""
9 echo "New environments:"

10 echo " conda create -n py36 python=3.6 anaconda"
11 echo " conda create -n openpmd-api -c conda-forge openpmd-api"
12 fi
13 ;;
14 brew)
15 eval $($HOME/src/brew/bin/brew shellenv)
16 ;;
17 spack)
18 . $HOME/src/spack/share/spack/setup-env.sh
19 spack env list
20 echo "Activate via: \"spack env activate <env>\""
21 ;;
22 rust)
23 export PATH="$HOME/.cargo/bin:${PATH}"
24 ;;
25 emsdk)
26 source $HOME/src/emsdk/emsdk_env.sh --build=Release
27 export CC=$(which emcc)
28 export CXX=$(which em++)
29 echo -n "Reminder: -DCMAKE_TOOLCHAIN_FILE=$HOME/src/"
30 echo "emscripten/cmake/Modules/Platform/Emscripten.cmake"
31 ;;
32 *)
33 echo "Usage: $0 {conda [env]|emsdk|rust|spack|brew}"
34 esac

Listing 1: $HOME/bin/impl-activate-env [8]

One can ”source” the above script into a Bash shell session
with source $HOME/bin/impl-activate-env <arguments>.
Arguments are plotted to the terminal when called without
(or with unsupported) arguments. In the case of conda, an
additional sub-argument can be specified to re-activate an
already created conda environment from prior sessions.

Finally, for increased productivity, we register a bash
helper-function activate-env <arguments> by adding a few
additional lines to the file $HOME/.bashrc. After opening a
new terminal, one can now activate a package manager with
activate-env <conda [env]|emsdk|rust|spack|brew>
This additional level of explicit activation provides a per-



fect level of control over user-level package managers and
their environments, while saving terminal and login startup

time by avoiding unnecessary source activation calls. The
$HOME/.bashrc snippet reads as follows:

1 # register a bash function that calls the script above
2 activate-env () {
3 . $HOME/bin/impl-activate-env $@
4 }
5

6 # bash completion for the above function
7 _activate-env()
8 {
9 local cur prev names

10 cur="${COMP_WORDS[COMP_CWORD]}"
11 prv="${COMP_WORDS[COMP_CWORD]}"
12 names="conda emsdk rust spack brew" # all primary options
13 if [ "${COMP_WORDS[1]}" == "conda" ]; then # sub envs: conda
14 local cenvs=$(ls $HOME/sw/miniconda3/envs)
15 COMPREPLY=( $(compgen -W "${cenvs}" -- ${cur}))
16 return 0;
17 fi
18 if [ ${COMP_CWORD} -gt 1 ]; then return 0; fi # no other sub
19 if [ "${cur}" == "" ]; then # no arg
20 COMPREPLY=(${names})
21 else # during arg eval
22 COMPREPLY=($(compgen -W "${names}" -- ${cur}))
23 fi
24 }
25 complete -F _activate-env activate-env

Listing 2: A snippet for $HOME/.bashrc [8]

V. ALTERNATIVE IMPLEMENTATIONS

The last section exemplifies how a one-liner at the beginning
of a workflow, e.g. when opening a new terminal or logging
into a computing machine, can achieve a high level of control
for user-level package management. There are without a doubt
more gentle implementations possible, e.g using environment
modules [9], [10].

VI. A NOTE ON APPLICATIONS

Contrary to all warnings above, well-written executables
are pretty robust when used in mixed workflow environments.
Especially popular developer tools such as CCache, CMake,
etc. come stand-alone in the sense that they properly link and
hint their runtime dependencies - even when switching software
environments. Also, when building a new software with them
they do not become a runtime dependency (contrary to e.g.
shared libraries such as MPI). One can just update and activate
them from whatever distribution, package manager or container
that appears handy.2

2The first executable found in the list of directories in PATH will be taken.

VII. SUMMARY

In summary, users and developers will use a package
management that they understand and that delivers fast and
reliable results for their current workflow. Frustration can be
avoided by following a few simple rules when trying new
user-level package mangers, such as activating one package
provider at a time. Explicit activation is generally more stable
than implicit activation - and it is worth demoting some of the
self-activating tools such as brew and conda to achieve that
goal. A simple implementation of such a workflow in pure
bash was shown here.

ACKNOWLEDGMENT

We would like to thank the communities of Spack, Conda-
Forge and Homebrew for effective productivity enhancement
in data science and HPC workflows. A. H. is a co-maintainer
of Spack and declares the competing interest of being able to
express all his development, user support, and HPC deployment
workflows with it. We are grateful for the communities of
PIConGPU and WarpX that provided inspiration for this report.

A. H. receives support by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of two U.S. Department



of Energy organizations (Office of Science and the National
Nuclear Security Administration).3

REFERENCES

[1] Conda community and Anaconda Inc., “Conda version 4.8.2,” 2020.
[Online]. Available: https://www.conda.io

[2] Brew community, “Homebrew version 2.4.2,” 2020. [Online]. Available:
https://www.brew.sh

[3] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.
de Supinski, and S. Futral, “The spack package manager: bringing
order to hpc software chaos,” in SC15: International Conference for
High-Performance Computing, Networking, Storage and Analysis. Los
Alamitos, CA, USA: IEEE Computer Society, nov 2015, pp. 1–12.
[Online]. Available: https://www.spack.io

[4] Python Packaging Authority: Pip Developers, “Pip version 20.1.1,” 2020.
[Online]. Available: https://pip.pypa.io

[5] Python Packaging Authority: Virtualenv Developers, “Virtualenv version
20.0.25,” 2020. [Online]. Available: https://virtualenv.pypa.io

[6] N. D. Matsakis and F. S. Klock, “The rust language,” in Proceedings
of the 2014 ACM SIGAda Annual Conference on High Integrity
Language Technology, ser. HILT’14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 103–104. [Online]. Available:
https://www.rust-lang.org

[7] A. Zakai, “Emscripten: An llvm-to-javascript compiler,” in Proceedings
of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion, ser.
OOPSLA ’11. New York, NY, USA: Association for Computing
Machinery, 2011, p. 301–312. [Online]. Available: https://emscripten.org

[8] A. Huebl, “Supplementary materials: bash scripts listed in this
document,” 2020. [Online]. Available: https://gist.github.com/ax3l/
0eff53b4db43865b769414a76247daa9

[9] J. L. Furlani, “Modules: Providing a flexible user environment,” in
Proceedings of the fifth large installation systems administration
conference (LISA V), Sep 1991, p. 141–152. [Online]. Available:
http://modules.sourceforge.net

[10] R. McLay, K. W. Schulz, W. L. Barth, and T. Minyard, “Best practices
for the deployment and management of production hpc clusters,” in
State of the Practice Reports, ser. SC’11. New York, NY, USA:
Association for Computing Machinery, 2011. [Online]. Available:
https://lmod.readthedocs.io

3Phew, the last chance to link this: https://xkcd.com/1987/

https://www.conda.io
https://www.brew.sh
https://www.spack.io
https://pip.pypa.io
https://virtualenv.pypa.io
https://www.rust-lang.org
https://emscripten.org
https://gist.github.com/ax3l/0eff53b4db43865b769414a76247daa9
https://gist.github.com/ax3l/0eff53b4db43865b769414a76247daa9
http://modules.sourceforge.net
https://lmod.readthedocs.io
https://xkcd.com/1987/

	Introduction
	Choice of Package Manager
	End-User Objectives
	Developer Objectives

	Interplay
	A Practical Example
	A Subjective Selection of Package Managers
	Manually Activating Package Managers

	Alternative Implementations
	A Note on Applications
	Summary
	References

