
Increasing the quality of (academic) scientific software

Jan-Patrick Lehra,∗, Tomislav Maricb, Dieter Botheb, Christian Bischofa

aScientific Computing, Computer Science Department, Technische Universität Darmstadt, Darmstadt, Germany
bMathematical Modeling and Analysis, Mathematics Department, Technische Universität Darmstadt, Darmstadt, Germany

1. Introduction

In computer science and other computational sci-
ences, reliable and maintainable software is key.
The urgent need for reproducibility of results puts
another strong emphasis on maintainable and trace-
able software versions, and their development pro-
cesses. Methodologies supporting developers to en-
sure these properties are available and benefit in-
dustrial software development, e.g., [1]. However,
in our experience such technology is only adopted
slowly in academia – often giving the reason that
it is not serving the purpose of science, i.e., writing
papers, or they are considered as given, underesti-
mating the time actually required to implement the
required mechanisms.

While we understand both positions, we highly
encourage using tools, such as continuous integra-
tion (CI), to develop better software (in academia).
Given well-tested software, it can, e.g., be extended
without the fear to break functionality. In our opin-
ion this ultimately leads to more productivity of the
people involved, i.e., the developers and scientists,
while ensuring reproducibility and traceability of
results. This perception is, e.g., supported by[2].

In this paper, we highlight three key approaches
that, for us, increased the software quality, usabil-
ity and ultimately, developer and user productivity.
(1) build from a user perspective: design and
implement the software in a way that you would
be happy with it as a user, e.g., using so-called
Test Driven Development (TDD). (2) use contin-
uous integration and testing: setup (at least
basic) CI capabilities right from the start of a new

∗Corresponding author
Email addresses: jan-patrick.lehr@tu-darmstadt.de

(Jan-Patrick Lehr), maric@mma.tu-darmstadt.de (Tomislav
Maric), bothe@mma-tu-darmstadt.de (Dieter Bothe),
christian.bischof@tu-darmstadt.de (Christian Bischof)

project and expand with increasing project time.
Integrate CI into existing projects gradually but
steadily. (3) containerize early and everything:
setup containerization early in the project to help
both users and CI with reproducible environments,
and at least create images of the software environ-
ment associated to accepted publications, to sim-
plify the reproduction of results.

2. Build from a user perspective

In academia many software projects are built
from a singular research point of view, as compared
to, e.g., an overarching mission. In our experience
this means: many (sometimes very) specific (li-
brary) dependencies; non-intuitive or broken build
processes; clumsy to use non-intuitive Application
Programming Interfaces (API); difficult to extend
tools and libraries because of a non-modular code
design. Very often, new versions of the code are cre-
ated to investigate alternative problems, or intro-
duce new methods, that are never merged with the
original version. This makes sharing of knowledge
between scientific projects practically impossible, as
the codes continue to diverge over time. Because
of these issues, researchers often rather start from
scratch, than face the nightmare of scientific legacy
code. This is sub-optimal, as it limits the useful-
ness of somebody’s work, as (1) only few other re-
searchers benefit from the achieved software, (2) the
code is rendered unusable as soon as the project
ends or the researcher leaves As a consequence, one
cannot build on the existing research work, which
increases the amount of work per individual, and
severely limits progress in research, as people re-
implement existing approaches and technology.

If software is built from the user perspective, arti-
facts, such as correct documentation or usable con-
tainers, are essential outcomes. Thus, extending ex-
isting work, or applying it to new fields is much eas-



ier and brings benefit to the individual researchers
who spend less time dealing with library incompati-
bilities and half-broken APIs. The user perspective
can be demanded or enforced at various levels, e.g.,
at the institution, or by an individual researcher.
Nevertheless, we prefer to demand artifacts for pub-
lications, whenever possible, and enjoy seeing more
and more artifact initiatives at conferences.

In our view, tests are the cornerstones of sci-
entific codes and a requirement for any scientific
publication. An interesting approach to building
software from a user perspective is the so-called
Test-driven Development (TDD). Teaching re-
searchers this simple practice might improve the
quality of scientific codes from the user perspective.

Developing from a user perspective from the start
requires some time and effort initially. However, we
are convinced that the return on investment is posi-
tive for any software project, as many of them tend
to extend to use cases not anticipated in the first
place, and the time required to remove technical
debt typically is significant.

3. Use continuous integration and testing

A technology that is of increasing interest and
adopted more often in our institution is continuous
integration as it performs remote automated test-
ing of the code in a central repository. This ensures
that the (automatic) tests not only ”run on my ma-
chine”, but also that the integrated modifications
proposed by others in the team either improve the
existing code, or at least not break anything. More-
over, the infrastructure ensures that all tests are
run, reducing the risk of fully broken builds. In our
software projects, we started employing CI over the
past couple of years to increase software reliability.

It becomes especially relevant to introduce CI
in development of scientific codes that implement
methods that cannot be made entirely mathemat-
ically rigorous. Such methods are usually based
on numerical approximations whose stability can-
not be analyzed and therefore require very rigorous
testing. Verification tests serve the purpose of en-
suring that modifications in the numerical approx-
imation do not break the convergence and stability
elsewhere. Even methods that allow more math-
ematical rigorous treatment may contain serious
bugs in their implementation and require automatic
verification and validation.

3.1. Continuous Integration with GitLab

We use GitLab CI and separate the tests into
two categories: (1) tests (potentially) executed on
a test server, and, (2) tests executed on a high-per-
formance computing (HPC) system. The reason
behind this separation is the disparity in execution
time, i.e., ranging from a couple of hours to up to
24 hours. We separate the CI pipeline further in
build, unit, smoke and production tests.

The build stage builds the software and potential
dependencies in a well-defined way. Unit tests tar-
get a specific single interface, e.g., a class. Smoke
tests integrate multiple components and test larger
parts of functionality, but with heavily reduced in-
puts to limit execution time. Finally, production
tests run actual experiments to validate the correct-
ness of the methods in real scenarios. Depending on
their computational demand, these stages and tests
are performed on different hardware resources.

3.2. Use CI with Numerical Software

In numerical software, obviously, the major at-
tention is on the numerical properties. Thus, nu-
merical unit tests can be fully verified with small in-
put data, and they require very short computation
times, which leads to an immediate feedback to the
developer. Smoke tests generate exactly the same
numerical output as performance tests, but with a
strongly reduced input size. They are good indi-
cators if something has gone seriously wrong when
introducing a modification, however, the lack of res-
olution in those tests makes them inapplicable for
errors that can only appear in production. Produc-
tion tests are used for the overall numerical method
with input data that have realistic sizes. They are
basically numerical experiments, that must be re-
produced, up to some accuracy, in order to ensure
that modifications are either improving the overall
method, or at least not making it worse.

3.3. Add CI in Existing Project

The PIRA project started as a small research
tool without any of, e.g., contribution guidelines,
or automated testing, and was split into five differ-
ent repositories for historic reasons. The increas-
ing complexity and people using it, highlighted the
need for more rigorous testing and a contribution
workflow. The introduction of a defined workflow,
supported by CI, had an immediate impact on qual-
ity and reliability as it emphasized the need for
(more) (1) setup automation, (2) robust testing,

2



and, (3) easier configuration. We followed the PSIP
Progress Tracking Cards1 to investigate the status
of the project and identify first steps. The intro-
duction of CI in all PIRA projects revealed some
minor bugs in the different tools, and in the actual
PIRA integration. The Gitlab issue tracker helped
with reporting and addressing them.

The initial CI integration was done over the
course of a few months, counting from the initial
start with CI at all, up to having the procedures in
place and the CI pipeline fully running.

3.4. Add CI from the Start

Codefilter is a project that started recently and
in which we, opposed to PIRA, set up both contri-
bution guidelines and CI from the very start. This,
so far, kept the time investment required into CI
reasonable, as we profit from (1) our previous ex-
periences from the PIRA project, and, (2) making
incremental changes rather than huge one-time ef-
forts. Specifically students who contribute to this
project can follow the clear workflow. In our opin-
ion, this lead to a much cleaner repository, history,
and working software, hence, people had to deal less
with clumsy setups and broken software states.

3.5. Challenges experienced

One obstacle was the lack of experience or train-
ing in CI and some required technologies. This is
especially true for domain scientists who do not re-
ceive training in, e.g., software testing or engineer-
ing. Another challenge was the lack of certain tech-
nical infrastructure, e.g., Docker executors, which
resulted in more complex CI solutions. A chal-
lenge in the PIRA project was the unnecessarily
complex project setup with numerous repositories,
which contributed to reliability issues.

Strict continuous integration, i.e., allow a contri-
bution only if all tests have passed, is possible with
the short running build, unit and smoke tests. It is,
however, still not clear to us how to integrate pro-
duction tests most beneficial into the CI workflow.
Continuing to work on the code while waiting for
production tests could mean a loss of a workday for
the researcher, if the production tests fail.

1https://github.com/bssw-psip/ptc-catalog, last ac-
cessed 2020/06/29

3.6. Opportunities identified

For a developer/scientists the introduction of CI
means higher productivity as people can focus on
the research task more quickly. Using CI imple-
ments an environment in which the software is
known to work. Consequently, the CI configuration
(1) ensures the software builds in a defined environ-
ment, and, (2) can serve as a reference for getting
started with the project. The latter being valuable
for, e.g., students, joining the project.

At an institutional level we see the consolidation
of efforts by individual research groups into com-
petence that is accessible across groups as a great
opportunity. From our experience, this can greatly
reduce the initial invest necessary and open the
technology to rather domain focused groups as well.
Thus, providing consulting and support for CI solu-
tions and teaching can help adopt the technology, as
we found the incremental changes throughout the
project much easier than the initial setup.

4. Containerization

Another technology that has gained traction – in
our case mainly for reproducibility – is container-
ization. In addition, the technology can help with
automated testing in CI and to make prototype
software more widely accessible, as a potential user
does not need to set up the environment. Thus,
using published research for a new use-case and in
other scenarios is easier to achieve.

In case of numerical software, we started using
containers by creating a Singularity [3] image for
each publication of the numerical software that is
developed at our institute. The image contains
both the software environment and the input data
to generate the results.

In case of other software projects, e.g. PIRA,
we are now slowly adopting containers. We cur-
rently evaluate Docker as the technology to cre-
ate portable development environments and both
Docker and Singularity as a means of easing the
access to the software.

4.1. Challenges and opportunities

The challenges are similar to the ones outlined
for CI: (1) time for initial adoption, i.e., to famil-
iarize one self with the technology, and, (2) creating
reasonable workflows that reduce the time to build
and prepare the images. The second part is a cru-
cial step, as it requires a decent understanding of

3



the technology to create achievable and lightweight
workflows that both research staff and students can
follow. In addition, the portability of such contain-
ers may be affected by the targeted HPC system,
as different systems use different schedulers, thus,
require different submission scripts, etc.

Containerization offers many opportunities for
researchers that develop software, as it can heav-
ily ease the process to set up an environment, and
ship prototype software. In addition, setting up
well-defined software environments increases pro-
ductivity as it removes many pain points in the
development processes of research software. This
can be used, not only for research, but also in prac-
tical teaching labs, in which students are asked to
develop software that should be submitted for grad-
ing at the end of the semester.

5. Conclusion

From our experiences we draw several conclu-
sions: First, software should always be thought
from a user perspective, as also a developer is a
user (at least of the internal APIs). This helps
to increase the quality and the user experience, of
which both help to enjoy, and interact with, the
software. Second, continuous integration helps sig-
nificantly to ensure software quality and helps to
catch several errors early. As a result, users and de-
velopers find themselves less frequently in a ”That
worked for me” situation, which helps with intro-
ducing new people to the project and to enjoy, and
interact with, the software. Third, containers help
with productivity through a software environment
that is easier to distribute, reducing the time re-
quired to install and configure dependencies. The
aspect of less frustrating interaction with a soft-
ware is independent of whether it is used by a de-
veloper who relies on a library API or a front-end
user doing domain science with, e.g., a simulation
software. This is important. People have to deal
less with obscure or unexpected behavior of a soft-
ware package, hence, they can work productively
on the actual task, i.e., their science.

Implementing the aforementioned techniques re-
quires time and commitment. In particular, the ini-
tial time invest may be significant and adds to the
assumption that it slows down (research) progress.
In our observation, this is not true, because of the
mid- and long-time benefits achievable. We see par-
ticular opportunities for both centralized and coor-
dinated and collaborative efforts at universities to

provide experience and knowledge as a consulting
service to establish such methodologies across re-
search groups. Moreover, we think that best prac-
tices in (scientific) software development and re-
search data management should also be taught to
students during their curriculum.

References

[1] A. Miller. A hundred days of continuous integration. In
Agile 2008 Conference, pages 289–293, 2008.

[2] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar
Devanbu, and Vladimir Filkov. Quality and productivity
outcomes relating to continuous integration in github. In
Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2015, page
805–816, New York, NY, USA, 2015. Association for
Computing Machinery.

[3] Gregory M. Kurtzer, Vanessa Sochat, and Michael W.
Bauer. Singularity: Scientific containers for mobility of
compute. PLOS ONE, 12(5):1–20, 05 2017.

4


