
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering 
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s 

National Nuclear Security Administration under contract DE-NA0003525. 
 

SAND2020-6631	C	
 
	

Navigating the Rapids: Creating a Continuous Integration System for Github and Jenkins 

A	whitepaper	for	the	2020	Collegeville	Workshop	on	Scientific	Software,	focusing	on	Developer	Productivity.	

Aaron	L.	Levine,	Jim	Willenbring,	Sandia	National	Laboratories	

There	are	many	stories	of	projects	benefitting	greatly	by	implementing	Continuous	Integration	(CI)	solutions.	
Most	describe	dramatic	reductions	in	test	time,	improved	developer	productivity,	and	cleaner	code.	What	
happens,	however,	when	the	publicly	available	CI	solutions,	such	as	Travis,	Appveyor	or	Github	Actions	
cannot	meet	the	needs	of	the	project?	How	does	a	project	team	move	forward	with	implementing	a	CI	
solution?	Many	teams	will	decide	that	creating	their	own	solution	is	the	best	course	of	action.	Oftentimes,	
what	these	teams	do	not	realize	is	that	the	software	engineering	methods	used	to	develop	these	solutions	can	
dramatically	affect	the	development	cost	and	maintainability	of	such	a	solution.	This	white	paper	will	discuss	
the	development	of	just	such	a	solution	called	the	“Pull	Request	Autotester”,	its	implementation	difficulties,	
multiple	expansions,	and	lessons	learned.	

The Genesis of the Pull Request Autotester 

The	Structural	Simulation	Toolkit	(SST)	team	at	Sandia	National	Laboratories	develops	simulation	
technologies	to	research	next-generation	high-performance	computer	(HPCs)	systems.	The	codebase	consists	
of	four	main	repositories	and	is	designed	to	run	on	a	variety	of	systems	ranging	from	Linux-based	desktop	
workstations	to	current	generation	HPCs.	Until	2015	the	SST	team	was	using	Subversion	(SVN)	for	version	
control,	with	all	development	in	a	single	branch,	and	struggled	to	keep	a	consistently	stable	and	buildable	
codebase.	The	repository	was	open	source,	allowing	researchers	around	the	world	to	access	the	codebase.	
Frequently	developers	would	unwittingly	push	broken	code	into	the	repository	that	caused	nightly	tests	to	
fail.	Recovery	from	this	broken	state	usually	took	upwards	of	3	days	to	correct.	Meanwhile,	developers	and	
researchers	who	merged	the	broken	code	were	blocked	from	further	development	until	the	issue	was	
resolved.	The	probability	of	SST	repository	being	“broken”	on	any	given	day	was	between	50-60%;	therefore,	
most	developers	distrusted	the	repository	and	would	not	integrate	changes	unless	absolutely	necessary.	

In	2015	SST	migrated	its	codebase	from	Subversion	to	Git	(hosted	on	Github).	During	this	time,	the	SST	team	
changed	its	workflow	to	a	gitflow	process	and	decided	to	implement	an	automated	Continuous	Integration	
(CI)	system	using	Github’s	and	Jenkins’	API	interfaces.	

Initial Design Objectives 

The	development	of	the	first	generation	Pull	Request	Autotester	(Autotester)	for	SST	started	as	a	simple	
discussion	of	“How	can	we	regularly	test	our	code	before	we	commit	it	to	our	repository?”.	That	discussion	
initiated	a	tremendous	number	of	changes	for	SST.	First	was	to	implement	the	gitflow	workflow	using	two	
main	branches	(master	and	devel),	followed	by	the	implementation	of	the	Autotester.	As	part	of	the	
workflow,	we	wanted	to	use	Github’s	branch	security	features	to	protect	our	master	and	devel	branches.	
Additionally,	the	SST	team	was	heavily	invested	in	using	Jenkins	for	its	testing	platform	and	wanted	to	
continue	leveraging	it.	As	a	result,	integration	with	Jenkins	was	also	required.	From	this	information,	an	initial	
set	of	“loose”	requirements	for	the	Autotester	were	generated:	-	Written	in	Python.	-	Identify	Pull	Requests	
targeting	the	devel	branch.	-	Run	one	or	more	Jenkins	jobs	against	the	source	branch	of	the	Pull	Request	-	
Automatically	merge	the	Pull	Request	if	the	tests	pass.	

	 	



SAND2020-6631	C	2	

The	desired	workflow	for	developers	is	described	in	the	diagram	below:	

	

Implementation 

The	initial	development	efforts	were	to	explore	many	of	the	3rd	party	Python	modules	that	communicated	
with	both	Jenkins	and	Github.	The	modules	JenkinsAPI	and	PyGithub	were	chosen	due	to	features,	stability,	
and	active	development	status.	A	number	of	small	experimental	test	programs	were	created	with	these	
modules	to	get	a	sense	of	the	operations	required	and	how	to	properly	use	them.	

Once	we	had	a	fair	understanding	of	how	to	interact	with	Jenkins	and	Github,	we	made	the	following	
implementation	decisions:		

• Python	Version	-	We	targeted	Python	2.7	due	to	the	perceived	(at	the	time)	instability	of	Python	3.	
• Configuration	files	-	Configuration	of	the	Autotester	would	be	controlled	by	simple	key/value	structured	

configuration	files.	
• Logging	-	To	facilitate	tracking	and	debugging	of	Autotester	processing,	a	generic	logger	would	be	

created.		
• Polling	Github	for	Pull	Requests	-	The	Autotester	would	poll	Github	rather	than	using	a	push	solution.	
• Github	configuration:		

o Repository	branch	protection	-	We	configured	our	master	and	devel	branches	as	read-only.	
o Pull	Requests	-	All	changes	to	the	devel	branch	were	to	take	place	via	Pull	Requests.	

	
After	the	initial	set	of	“loose”	requirements,	no	further	effort	was	undergone	to	make	a	formal	set	of	
requirements.	At	the	time	we	had	a	general	idea	of	what	we	wanted	to	do,	but	we	did	not	realize	all	of	the	
nuances	and	small	details	required	to	implement.	One	example	was	that	it	sometimes	took	multiple	attempts	
to	query	Github	on	the	mergeable	status	of	a	Pull	Request	before	getting	a	correct	response.	We	opted	for	the	
“shoot	from	the	hip”	approach	and	created	the	Autotester	“on	the	fly,”	adding	features	and	non-reproducible	
“one-shot”	tests	to	prove	functionality	as	needed.	In	retrospect,	this	caused	repetitive	rework	of	the	
Autotester	code	to	implement	new	requirements	that	we	likely	could	have	anticipated	had	we	practiced	
better	requirements	management.	



SAND2020-6631	C	3	

Results from the Initial deployment 

The	development	of	the	initial	Autotester	took	about	three	months,	and	the	changes	after	initial	deployment	
took	another	three	months.	These	6	months	were	quite	chaotic	as	many	changes	were	being	made	to	both	the	
workflow	and	Autotester	at	the	same	time.	Most	of	this	time	was	due	to	the	“loose”	requirements	for	the	
Autotester	and	inexperience	of	the	team.	

About	six	months	after	the	final	changes	to	the	Autotester,	the	SST	project	had	made	huge	strides.	The	team	
had	fully	integrated	the	workflow	and	the	Autotester	was	in	production.	The	result	of	this	was	that	the	
stability	of	the	codebase	had	dramatically	improved.	At	this	point,	both	the	master	and	devel	branches	were	
stable	and	buildable	approximately	99%	of	the	time.	There	were	occasional	failures	that	went	unchecked	by	
the	Autotester,	but	those	were	due	to	coverage	issues	with	the	Jenkins	CI	tests	and	were	quickly	corrected.	
While	many	of	the	developers	were	initially	resistant	to	the	Autotester,	they	have	since	become	strong	
supporters	of	its	usage.	

The Second Generation Autotester 

Approximately	one	year	after	the	deployment	of	the	first	generation	Autotester,	the	Trilinos	frameworks	
team	expressed	interest	in	the	Autotester.	Trilinos	was	experiencing	similar	difficulties	as	SST:	developers	
submitting	broken	code	to	the	codebase,	many	nightly	tests	failing	consistently,	and	constant	human	
interaction	required	to	manage	the	workflow.	

In	order	to	support	the	Trilinos	project,	significant	changes	to	the	first	generation	Autotester	were	required.	
These	changes	were	deemed	the	“second-generation”	version	of	the	Autotester	and	required	efforts	to	
maintain	backwards	functionality	for	SST.	Again,	non-reproducible	“one-shot”	tests	were	created	to	verify	
Autotester	functionality.	Some	of	these	changes	required	were:	

Generic	Project	Support:	The	Autotester	had	a	large	amount	of	code	that	was	SST	specific.	There	was	a	
considerable	effort	to	extract	this	code	and	make	the	Autotester	“project	agnostic”.	

Testing	Throughput	and	Robustness:	Trilinos	was	handling	approximately	ten	times	as	much	Pull	Request	
traffic	as	SST,	and	its	test	time	was	about	three	times	as	long.	Significant	effort	was	required	to	handle	the	
testing	demands	of	Trilinos.	Additionally,	The	PyGithub	and	JenkinsAPI	modules	had	no	low-level	
communication	retry	features.	Complex	solutions	were	required	to	“harden”	the	interfaces	so	that	spurious	
network	glitches	would	not	break	operations.	

New	Features:	Many	numerous	new	features	were	implemented	to	support	the	needs	of	the	Trilinos	project.	
While	these	were	great	improvements	to	its	operation,	they	were	sometimes	quite	difficult	to	integrate	and	
required	significant	re-writes	of	code.	

Once	deployed,	it	took	roughly	as	much	time	for	the	Trilinos	team	get	used	to	the	newer	workflow	imposed	
by	the	Autotester	as	it	had	for	the	SST	team.	About	six	months	after	the	deployment	of	the	second	generation	
Autotester,	the	Trilinos	project	had	made	tremendous	progress.	Its	codebase	was	significantly	more	stable	
and	no	longer	has	tests	failing	for	long	periods	of	time.	

Difficulties Encountered in Development 

The	Autotester	implementation	had	a	number	of	difficulties.	Inexperience	and	testing	with	Github	were	some	
of	the	primary	issues.	However,	once	the	Autotester	started	to	be	used	in	production,	many	new	
requirements	were	discovered,	and	this	caused	significant	re-writes	of	portions	of	the	code.	

Developer	experience:	The	main	developer	of	the	Autotester	was	learning	Python	while	developing	the	
Autotester	at	the	same	time.	This	made	it	very	difficult	to	implement	a	large	complex	application.	Much	of	the	
existing	Autotester	code	is	not	pythonic	due	to	this	inexperience.	



SAND2020-6631	C	4	

Github	knowledge:	Since	the	SST	team	was	quite	new	to	Github,	there	was	a	large	learning	curve	to	
understand	Github’s	operations,	features,	and	limitations.	The	team	had	to	learn	how	to	use	Git	and	Github,	a	
new	workflow	process	(gitflow),	and	how	to	integrate	the	Autotester	into	that	workflow.	During	this	time,	
many	of	the	new	requirements	for	the	Autotester	were	being	generated	as	the	SST	team	realized	the	power	of	
the	tool	and	how	it	could	improve	the	workflow	process.	

The	main	developer	was	also	new	to	Git	and	Github.	This	compounded	many	of	the	challenges	in	developing	
the	Autotester	as	many	Github	features	were	being	discovered	during	Autotester’s	development.	Essential	
and	useful	features,	such	as	Github	statuses,	were	not	recognized	until	well	into	the	Autotester	development.	

Testing	difficulties:	Since	the	SST	repositories	were	under	active	development,	testing	of	the	Autotester	had	
to	be	completed	using	forked	repositories	and	separate	user	accounts.	Quick	and	dirty	implementation	tests	
were	created	on	the	fly	to	test	the	various	features.	These	tests	were	one-shot	configurations	and	were	
discarded	as	soon	as	the	feature	was	working.	

Code	Inspections:	The	team	realized	that	different	developer	roles	required	different	types	of	code	
inspection.	This	required	significant	changes	in	the	Autotester	to	support	appropriate	inspections	of	code	
submitted	by	Pull	Request	before	testing.	Github	provided	features	for	reviewing	code,	but	at	the	time,	
PyGithub	did	not	yet	support	those	features.	The	developers	had	to	create	and	submit	changes	to	PyGithub,	
which	caused	a	significant	delay,	in	order	to	implement	inspection	of	code	before	testing.	

New	requirements	causing	change	to	the	existing	design:	After	the	initial	version	of	the	Autotester	was	
deployed	and	while	the	second	generation	Autotester	was	created,	a	large	number	of	new	requirements	were	
identified.	Implementation	of	requirements	usually	required	some	refactoring	of	the	code.	

Additional	applications:	As	the	teams	realized	that	more	automation	could	be	used,	there	were	requests	for	
other	applications	to	automate	the	workflow.	For	example:	Users	began	to	question,	“Could	we	do	this	
automatically	if	all	of	our	nightly	tests	pass?”	This	caused	us	to	refactor	a	large	portion	of	the	code	into	a	set	of	
common	python	files	so	that	we	could	create	a	new	application	called	masterautomerge.	Several	other	
additional	support	applications	were	created	using	the	modules	of	the	Autotester:	such	as	a	nightly	report	of	
the	overnight	tests	and	weekly	report	of	all	issues	in	the	Github	repositories.	

Jenkins	CI	tests	were	not	providing	enough	coverage:	While	not	specifically	a	feature	of	the	Autotester,	
the	SST	team	had	to	create	a	number	of	CI	tests	that	the	Autotester	would	be	running.	Initially	the	objective	
was	to	have	tests	provide	a	quick	turn-around,	simply	returning	a	pass/fail	result	to	the	user.	We	discovered,	
however,	that	these	short	tests	did	not	provide	enough	coverage	and	were	allowing	a	number	of	failures	
through	to	the	devel	branch.	Eventually	a	set	of	parallel	tests	which	took	a	slightly	longer	runtime	were	
developed	to	provide	the	necessary	coverage.	

Lessons Learned 

The	development	of	the	Pull	Request	Autotester,	while	ultimately	a	success,	had	a	large	number	of	difficulties	
that	could	have	been	avoided	with	more	upfront	planning:	

Minimal	requirements	up	front	and	lack	of	understanding	of	the	operational	environment:	The	
Autotester	started	in	the	same	way	that	more	projects	do:	as	an	experiment	to	see	if	it	could	be	done.	We	did	
not	have	a	full	understanding	of	the	available	features	of	Github	and	our	3rd	party	modules.	Had	a	more	
detailed	set	of	requirements	been	created	upfront	along	with	plans	for	growth,	the	development	would	have	
been	smoother	and	provided	a	significantly	more	maintainable	application.	

Limited	project	scope:	The	initial	Autotester	was	coded	specifically	for	the	SST	project.	Expanding	its	scope	
to	support	much	larger	projects	resulted	in	substantial	effort	that	could	have	been	avoided	had	it	been	
designed	agnostically	from	the	beginning.	In	this	same	area,	not	recognizing	that	future	projects	would	
require	significantly	more	throughput	in	processing	Pull	Requests	caused	unnecessary	rework.	



SAND2020-6631	C	5	

Too	few	and	inexperienced	developers:	There	were	two	people	involved	in	the	initial	development	of	the	
Autotester.	One	was	generating	concepts	for	features,	and	the	other	was	coding	the	actual	application.	The	
coder	was	learning	Python,	Git,	and	Github	all	at	the	same	time.	This	introduced	significant	floundering	and	
non-pythonic	code.	For	an	application	of	this	complexity,	it	would	have	been	better	to	have	two	to	three	
people	cooperatively	developing	the	product.	Other	developers	could	have	had	the	opportunity	to	perform	
code	reviews	and	would	have	mitigated	the	effects	of	inexperience.	

Project	customization:	Every	project	had	special	needs	that	were	not	met	by	the	Autotester.	Providing	some	
sort	of	a	customizable	“plug-in”	infrastructure	would	have	reduced	the	amount	of	rework	necessary	to	make	
the	Autotester	work	for	that	project	and	would	allow	the	project	team	to	tweak	operations	to	meet	their	
needs.	

Test	Driven	Development	(TDD):	Currently	it	is	daunting	to	consider	adding	new	features	and	correcting	
issues	in	the	Autotester.	There	is	no	existing	test	system	for	the	Autotester,	and	developers	fear	breaking	
existing	functionality.	The	original	developer	is	the	only	one	who	has	confidence	to	make	changes	due	to	his	
intimate	knowledge	of	the	code.	Had	the	Autotester	been	developed	using	TDD	techniques,	the	quick,	one-
shot	tests	would	have	actually	been	built	into	the	test	system,	and	a	consistent	and	repeatable	set	of	tests	
could	be	run	on	any	code	changes	to	protect	against	failures.	The	best	way	to	say	this	is,	“CI	testing	tools	need	
to	use	CI	testing	techniques	themselves.”	

Impacts	to	the	team:	The	introduction	of	automated	CI	systems	can	cause	considerable	upset	to	a	team’s	
workflow.	Methods	to	mitigate	and	slowly	introduce	the	system	into	the	workflow,	rather	than	conducting	a	
massive	overhaul	of	their	entire	process	simultaneously,	allows	users	more	time	to	adapt	to	the	change.	

Conclusion 

While	there	are	numerous	CI	solutions	for	Github	(Travis,	Appveyor,	Github	Actions),	these	generally	do	not	
function	inside	of	a	corporate	firewall,	which	many	national	laboratories	and	private	companies	require	for	
cyber	security.	Projects	that	develop	their	own	solutions	can	take	multiple	approaches	but	developing	such	a	
critical	piece	of	infrastructure	is	not	an	insignificant	task	and	should	only	be	undertaken	using	mature	
software	development	processes.	

Currently	there	are	four	projects	using	the	Pull	Request	Autotester,	with	a	fifth	soon	to	be	online.	The	
development	was	ultimately	a	success,	but	due	to	poor	requirements	management	and	development	methods	
upfront,	it	was	a	significantly	more	challenging	project	than	originally	anticipated.	Though	the	second-
generation	code	is	stable,	no	major	features	are	planned	for	future	development,	due	to	the	risk	of	breaking	
existing	features.	Had	the	Autotester	been	developed	as	a	full-fledged	product	with	a	team	of	developers,	
defined	requirements,	and	a	mature	development	process,	there	is	no	doubt	that	the	code	would	have	been	
written	better,	easily	maintainable,	and	quickly	developed,	which	provides	better	possibility	for	introduction	
of	new	features.	

Due	to	the	importance	of	the	Pull	Request	Autotester	for	Sandia	projects	and	the	desire	to	implement	
additional	features,	a	new	Autotester	(third	generation)	is	currently	in	the	early	phases	of	development.	
Lessons	learned	from	the	previous	generations	are	being	applied.	There	will	be	a	defined	set	of	requirements,	
the	product	will	be	preemptively	designed	for	expansion	and	customization	by	other	projects,	the	
development	team	will	include	multiple	developers,	and	it	will	be	developed	using	Test	Driven	Development	
techniques.	Had	this	been	done	from	the	beginning,	this	effort	and	its	associated	costs	could	have	been	
avoided.	


