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1 INTRODUCTION

Focusing only on the second stage of the US Department

of Energy’s (DOE’s) CORAL hardware deployments,

exascale machines, and their ever-increasing

complexity, becomes even more exacerbated in a wider

scope of compute-intensive systems. Some of the

post-petascale and pre-exascale systems already

exhibited this increased complexity trend. This

highlights the need to to utilize the effort of scientific

programmers on the functionality and scalability of

numerical libraries, the need for performance portability
without sacrificing productivity is greater than ever.

Often enough, these three P’s—performance,

portability, and productivity—constitute conflicting

requirements at the exascale regime. Our goal is to

redirect the developer productivity away from the

platform-specific performance engineering to writing

portable and performance-conscious code that is

seamlessly deployed with automated adaptation to the

exascale hardware platforms by using the performance

constraints of the target machine.

Transitioning the existing library codes from custom

GPU acceleration to full GPU residency, and from plain

GPU-offload to advanced CPU reverse-offload, will

continue to be disruptive. The tacit assumption about

optimal library performance across the spectrum of

deployment targets will slowly come undone. This is a

result of the combinatorial growth of the number of

hardware platforms and their possible software

configurations. Consider a single library routine

running across all available CPU sockets and GPU

accelerators for a common input data. This is the

showcase scenario that is optimized by the library

developers to feature the best performance gains for the

library and the hardware. However, any departure from

the ideal configuration will result in sub-optimal

efficiency, as this represents less-than-desirable

conditions for the library to achieve close-to-peak

performance (whatever the peak may be for the library,

function, and hardware combination). Exascale

Computing Project (ECP) applications integrate

multiple libraries as the cross-library integration effort

have been expressly stated goal from the very inception

of the program. With all the software pieces coming

together in a single application run while the

constituent libraries that were optimized in separation.

Worst yet, the hardware, OS, and middleware can be

configured optimally for only a single purpose and will

likely not fit well with most of the software components

that the application uses. Runtime scheduling, by

OpenMP, Kokkos, RAJA, etc., further complicates the

situation with runtime-only effects that cannot be

repeated let alone reliably reproduced on the developer

machine due to the plethora of factors such as system

configuration, software versioning, and a variety of

hardware constraints such as limited availability of

components outside of specific NDA and contractual

agreements.

2 RUNTIME MIDDLEWARE: SCHEDULING AND COM-
MUNICATION

Runtime scheduling with adaptive load balancing has

been used in scalable applications, and ECP is no

exception. It can alleviate many of the issues often

plaguing HPC codes. However, the limiting factor is the

library performance that the runtime can only schedule

around, but it is not optimized. In other words, the

library kernels are black boxes invoked by the runtime

as tasks. The kernel performance and cooperation across

nodes inside communication tasks must be optimized

by the library developer and can only be minimally

improved by the runtime. For example, unblocked

matrix-multiply is inherently inefficient and so are

global collectives that use heavily unbalanced trees. No

scheduling runtime can affect these fundamental flaws

of implementation. Therefore, the library development

team is responsible for the optimization and must take

into account the plethora of execution scenarios that the

runtime is likely to use during the application run. Due

to the complexity of multi-GPU distributed memory

development process, such comprehensive optimization

accommodations are rarely done let alone possible and

we aim to tackle this issue. By exposing performance

configurations, we made them amenable to statistical

modeling and thus remove the productivity burden of

the shoulders of core development team and off-load it

to automate integration pipelines and data collection

systems for automated optimization provisioning.
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5 STANDARDS

Format sign mantissa and exponent bits

10 + 5
IEEE 754: ±

unit round-off = 5 × 10−4

7 + 8
BFLOAT16: ±

unit round-off = 4 × 10−3

Figure 1: Half precision representations in industry stan-

dards and modern hardware. Yellow squares represent

mantissa bit and navy blue squares represent exponent

bit.

Table 1: Summary of floating point standards.

Acronym Name mantissa exponent

fp128 quad 122 15

fp80 extended 64 15

fp64 double 52 11

fp32 single 23 8

fp16 half 10 5

tf32 tensor float 10 8

bf16 brain float 7 8

3 REPRODUCIBILITY: DRAG ON PRODUCTIVITY BUT
CRUCIAL FOR COMPARING PERFORMANCE

One of the goals is also to correlate the performance

configuration of the numerical libraries with the

experimental testing data on ECP hardware. This would

enable us to increase the reproducibility of the runs and

their results. These correlations can be compared

statistically between users’ machines outside of the

development environment. They can also be compared

between the users’ and developers’ machines to

discover performance regressions or to reproduce

performance issues. Owing to the natural variables of

modern hardware execution, Machine Learning (ML)

metrics will be used to establish robust similarity (e.g.,

in the presence of multi-modal latency on dynamically

routed interconnects or size-dependent performance

variance).

4 FLOATING-POINT PRECISION STANDARD THAT
ISN’T

In the time between the two updates of the IEEE 754

standard for floating-point, 2008 and 2019, the industry,

and the Deep Learning (DL) hardware in particular, was

fully engaged in a war of floating-point representations

for ML workloads. The main two contenders are shown

in Fig. 1: the half precision fp16 and bf16. Espousing the

merits or criticising the flaws of either of them is

beyond the scope here as the year 2020 brought a new

one in the form of TF32 shown in Table 1 in context of

all the other prevailing floating-point format types.

Choosing, adapting, and implementing software for any

of these formats becomes the new normal for library

development as only some of these formats are

portable, some – productive for the applications, and

few perform at the peak of the platform.

It is hardly a coincidence that FP16, BF16, and TF32

form a triad that exchanges exponent and mantissa bits

to achieve a different goal: either be range-limited or

accuracy-limited, or sacrifice performance. Neither of

them can eschew all three limitations at the same time.

Some of these considerations are highlighted in Table 1

but listing these three formats in adjacent rows at the

bottom for easy comparison.

5 STANDARDS

Choosing an ISO/ANSI, de-facto, or an industry

standard is now an issue that touches all three

components of the productivity, portability, and

performance triad. The humble beginnings were

marked by MPI-X paradigm and are now subsumed by

more of X+Y+Z zoo of quickly maturing and scalable

solutions. To name a few, OpenSHMEM and

nvSHMEM are global shared-memory interfaces

supported by community and a vendor, respectively.

When driven primarily by performance they might be

able to be a solution of choice in contexts. And with

node performance slowly entering hundred Tera-FLOP

range, many existing application may be able to

successfully use some of these alternatives.

What remains now platform stack support (compilers

vary widely in their language standard compatibility)

and exposure to versioning changes. The emergence of

C++ as the replacement language for many scientific

libraries has now exposed them to the fast-paced

development and deprecation cycle and the need for

supporting a number of vastly different vendor

compilers. The universal adoption of the LLVM tool

chain by the vendors vastly improved the situation

whereby the applications do not have to require

exclusive use of GCC as many have done in the past.

Our own efforts in standardizing BLAS in the C++23

library will make this case even stronger.

The minimalist nature of OpenMP still remains an

attractive alternative to low-level threading. Even

though, in some contexts, it might have lost some of its

past appeal after the addition of the accelerator off-load

portion of the standard. However, useful functionality

is still available with a small subset of the standard.

And the available implementations that perform well

and integrate seamlessly with the other members of the

scientific software stack. Therefore, OpenMP remains

the solution of choice across our library offerings.
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6 CONCLUSIONS

6 CONCLUSIONS

Our libraries use a mix of techniques in order to deliver

the promise of reconciling three the productivity,

portability, and performance triad. Delegation,

standardization, and autotuning give us opportunities

to tame the complexity of contemporary hardware

trends and be able hide it effectively and efficiently

behind useful abstractions for the scientific applications

and correctly answer the question raised in the title and

productively take advantage of the available

performance in a portable manner.
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