
Long-term Productivity for Long-term Impact

Spencer Smith: smiths@mcmaster.ca and Jacques Carette: carette@mcmaster.ca

Computing and Software Department, McMaster University, Ontario, Canada

June 29, 2020

Abstract: We present a new conceptual definition
of ‘productivity’ for sustainably developing research
software. Existing definitions are flawed as they are
short-term biased, thus devaluing long-term impact,
which we consider to be the principal goal. Taking
a long-term view of productivity helps fix that prob-
lem. We view the outputs of the development process
as knowledge and user satisfaction. User satisfac-
tion is used as a proxy for effective quality. The
explicit emphasis on all knowledge produced, rather
than just the operationalizable knowledge (code) im-
plies that human-reusable knowledge, i.e. documen-
tation, should also be greatly valued when producing
research software.

Research software can be a critical component
of high-impact scientific and engineering projects.
Some of that software is meant to be used just once
(such as when analyzing one-off data), but more often
research software is meant to provide useful tools to
be re-used by the community. While even one-off
scripts should be of decent quality and public, for
the sake of reproducible science, here we want to
focus on the long-lived, impactful tools.

Such tools are meant to be long-lived, but a quick
online search will find many dead and abandoned
projects. Why is that? In part, this is caused by the
short-term incentives inherent in the development
environment (students leaving upon completing their
degree, the quest for new funding, completion of
the computations needed for a publication). Meet-
ing these goals can be done even in the presence
of sloppy software engineering practices. However,
sloppy practices generate mountains of “technical
debt” that are anathema to the longevity and sus-
tainability of long-lived impactful research software.

The focus on the short-term is a systemic problem,
right down to the antiquated definition of ‘product-
ivity’ that is often used (implicitly or explicitly). To

better understand how to balance short-term goals
and long-term impact, we need to revisit the very def-
inition of ‘productivity’ as it pertains to knowledge
work, especially when software is involved. This is
an especially difficult topic that has perplexed many
for decades. Here, we recommend Drucker’s foun-
dational article “Knowledge-Worker Productivity:
The Biggest Challenge” (Drucker, 1999) as a lucid
introduction to the problem.

To put it succinctly, we aim to provide a conceptual
definition for ‘productivity’ that can be meaningfully
applied in a research software context.

More precisely, we are redefining productivity, as
we found the existing definitions inadequate (Sec-
tion 1). Sustainability, or the long-term development
of useful software done with a reasonably amount
of effort, is not taken into account. In Section 2 we
lay out the criteria that underly our (re)definition.
Finally in Section 3, we explain our redefinition of
productivity.

1 Defining Productivity: a Brief
History

The first scientific study of productivity of workers,
in a manufacturing context, was conducted by Tay-
lor (1911) over 100 years ago. He first focused on
examining and understanding the tasks that needed
to be done, eliminating those that were not needed,
and then optimizing the remaining ones. It was
ground-breaking, and enabled decades of product-
ivity improvements. It also showed that labourer
productivity can be increased by using incentives
and investing in training. His insights have been
relabelled many times over the decades, but not fun-
damentally changed.

The standard definition of productivity, such as
given by U.S. Bureau of Labor Statistics, is to divide

1

mailto:smiths@mcmaster.ca
mailto:carette@mcmaster.ca
https://www.bls.gov/lpc/


the amount of goods and services produced by the in-
puts used in their production (usually a combination
of labour and capital). The Business Dictionary aug-
ments this slightly, by computing productivity as the
ratio of average output per period and the total costs
incurred or resources (capital, energy, material, per-
sonnel) consumed in that period. In an agricultural
context, productivity measures the amount produced
by a target group (country, industry, sector, farm
or almost any target group) given a set of resources
and inputs (FAO, 2017). The details differ, but these
equations all come down to defining productivity as
outputs produced per unit of input. The time period
of interest is relatively short; it is the time between
starting and finishing production.

The inputs and outputs of “production” for
knowledge-based work are much harder to pin down.
Labour hours spent on-task is certainly inadequate.
And what about the necessary hours spent on admin-
istration, or learning new skills? What about “day
dreaming”? Both research and anecdotal evidence
suggest that some of the most impactful ideas result
from a wandering mind (Sundheim, 2018). What
are the outputs? In the words of Drucker (1999), we
need to know what is the task? Is the only work that
matters related to the executable code, or should
we count test cases, design documentation, meeting
minutes, etc? When do we define a task as complete?
When the code first compiles, or its first released,
or its 20th release? Merely releasing software is less
than half the work, as the quality of the results is at
least as important as the quantity (Drucker, 1999).

In software engineering Boehm (1987) defines prod-
uctivity as above: outputs divided by inputs. For
him, the inputs are comprised of labor, computers,
supplies, and other support facilities and equipment,
accounted in present-value dollars. What specifi-
cally to count as input is left open for each project;
Boehm (1987) suggests each project’s manager decide
whether to include costs such as requirements analy-
sis, documentation, project management and secre-
tarial support. Worse still, for outputs, Boehm (1987)
mentions several options including Delivered Source
Instructions (DSI), code complexity metrics and func-
tion points. All of these have been thoroughly de-
bunked as meaningful outputs. Agile projects, for
a while, measured productivity via story points (In-
fopulse, 2018), but that too has been soundly rejected;
academic papers on such negative results are hard to
find, but cogent explanations by software engineers
abound; we recommend Nortal H.Q. (2018). Our
position is that the problems with productivity mea-
sures are caused by too close an adherence to the

manual worker model proposed by Taylor (1911).
Drucker (1999) helpfully gives six major factors

underlying knowledge worker (KW) productivity:

1. Clearly asking What is the task?

2. Workers must have autonomy on how to per-
form their tasks. They must largely manage
themselves.

3. Continuous improvement has to be part of the
work and responsibility of KW.

4. Continuous learning, and continuous teaching
(i.e. knowledge sharing) are crucial and ex-
pected.

5. Productivity should be weighted at least as heav-
ily on quality as on quantity.

6. Productivity accounting requires that KW are
viewed as assets, not costs.

What Drucker (1999) is implicitly saying is

• Knowledge is both an input and an output to
knowledge work,

• The software is not the task.

2 Improving the Definition of
Productivity

Existing definitions of productivity largely ignore
effects that arise because of long term concerns, such
as sustainability. Furthermore, their views of what
are inputs and outputs are too simplistic regarding
knowledge work.

2.1 Long-Term View

Sustainable development “... meets the needs of the
present without compromising the ability of future
generations to meet their own needs” (Brundtland,
1987). Meeting the needs of the present entails devel-
oping research software that meets its requirements,
both in terms of quality and functionality; meeting
the needs of the future means software that is main-
tainable, reusable, and can be used in reproducible
research. Properly taking the future into account
requires a future-viewing definition of productivity.

This entails:

1. that quantity cannot be the only measure
of productivity, quality is at least as impor-
tant (Drucker, 1999). If current work does not

http://www.businessdictionary.com/definition/productivity.html


survive into the future, then it is not part of
long-term productivity. If current work adds
technical debt, it should be considered negative
productivity.

2. that code is not the only important artifact.
On large projects, turnover and training are
substantial issues. Documentation becomes a
crucial means by which project knowledge does
not simply disappear.

3. that productivity should be based on outcomes,
not artifacts produced. For much research soft-
ware, this outcomes are a combination of impact,
utility over time and reach.

On the last point, an apt analogy is perhaps tenure:
the goal is to grant tenure to faculty members that
have produced quality work (work of lasting value)
over a long period of time, as judged by their re-
spective communities, in the hopes that they will
continue to do into the future.

Infopulse (2018) emphasizes outcome based prod-
uctivity by suggesting that business success is the
ultimate metric of productivity. The key question to
ask: “Is your customer happy?”. For research soft-
ware, this is better termed as user satisfaction, as
this encompasses both open source and commercial
views of software.

2.2 Outputs: Knowledge and Satisfaction

The creation of research software is much more
than just encoding previous knowledge as executable
knowledge (aka code). Code is merely an ends to a
means: to encode certain knowledge in executable
form, for the benefit of many. But code is a terrible
means of knowledge transmission. Furthermore, the
creation of research software usually involves creat-
ing new knowledge. Drucker (1999) implicitly says
the same thing when he links the productivity of
KWs to continuous teaching, since documentation is
a form of teaching, or knowledge transfer.

What about “user satisfaction”? Certainly the
numbers of users, number of citations, number of
forks of a repository, and the number of “stars”,
weighted by the potential number of users, are all
indicators that users find utility in the software. A
proper satisfaction measure would likely also involve
considering both known issues and a survey of exist-
ing users.

By redefining output to encompass the quality and
quantity of knowledge produced, previous measures’
flaws can be eliminated. For instance, counting lines

of codes becomes explainably bad. Counting lines
of code discourages using an external library, refac-
toring to make code shorter, or even spending time
writing a requirements specification. However, all of
these are activities that increase the effective knowl-
edge delivered over time to users, at a lesser total
cost.

As the knowledge produced will be used by dif-
ferent kinds of users (such as internal developers
and external users), it is important to weigh the
satisfaction of each class separately.

Specific measures would take us too far afield, but
we can point to some useful evidence. A structured
process backed by tools can work very well: Smith
et al. (2018) shows that the quality of statistical soft-
ware for psychology is considerably higher for CRAN
(Comprehensive R Archive Network) based software
than others. The main difference is that CRAN
mandates that some content be present in any con-
tribution. This is backed by automated verification
tools.

2.3 Inputs: Labour and Knowledge

Research software is created by skilled, knowledge-
able people, who ought to be able to efficiently in-
tegrate both their internal (tacit) knowledge of the
task to be done with external, relevant knowledge.
The latter can come in multiple forms, both internal
to the project (manuals, design documents, theory
manuals, etc.) and external (textbooks, papers, etc.)
We cannot really measure this by days worked: some
studies show (Ghezzi et al., 2003, p. 468) that the
most important productivity factor, by a wide mar-
gin, is the capability of the personnel. In other words,
a junior engineer may struggle for days to accom-
plish a task that a senior colleague could complete
in minutes. The importance of knowledge for KWs
is why (Drucker, 1999) emphasizes the importance
of continuous learning.

Making knowledge an explicit input should dis-
pel the common misconception (Ghezzi et al., 2003,
p. 469) that software developers are interchange-
able. Knowledge disparity between workers is one
reason why a software development project cannot
be sped up by simply assigning more developers to
the task (Frederick P. Brooks, 1995). Another reason
is communication overhead for sharing the required
knowledge.

Knowledge appears as both an input and an output
because knowledge is the feedback in the software
production loop. Part of the knowledge produced
while developing one version of the software will be



used as input for the next iterations (often far into
the future) of the software. Moreover, knowledge
produced by other projects may also be relevant,
and should be incorporated.

However, we need to differentiate between actual
inputs and effective inputs. The actual inputs are the
number of hours worked by all workers associated to
the project, regardless of task or skill. The effective
inputs are those hours that are spent on actually
generating knowledge.

3 Productivity Redefined

It is still too early to give a directly measurable defi-
nition of productivity. We thus settle on a definition
that can at least allow us to reason about productiv-
ity, one that encompasses more of the relevant factors.
Scientific computing (the heart of much research soft-
ware) is our model: its definition of (forward) error
requires knowing the, usually unknown, true answer.

As a starting point, here is our conceptual formula
for productivity:

I =

∫ T

0
H(t) dt

O =

∫ T

0

∑
c∈C

Sc(t)Kc(t) dt

P = O/I

where P is productivity, 0 is the time the project
started, T is the time in the future where we want to
take stock, H is the total number of hours available
by all personnel, C represents different classes of
users (external as well as internal), S is satisfaction
and K is practical knowledge. Thus productivity
is measured in “satisfying reusable knowledge per
hour.”

An obvious refinement would be to split the time
period into two, [0,now] and [now, T ], and then the
quantities in the future integrals could be modified
to be over expectations of the quantities in question.
This would more clearly account for the effect of the
“crystal ball” that must be used to predict what will
be practical knowledge and what will increase user
satisfaction.

4 Conclusion

We have presented a conceptual definition that em-
phasizes that productivity for knowledge based work,

like research software, only makes sense when consid-
ered over the long term. If our goal is sustainable soft-
ware, then we need a definition of productivity that
will drive developers to value long-term considera-
tions. In particular, this means explicitly considering
knowledge as an output. One practical consequence
would be an increased emphasis on internal documen-
tation meant to capture crucial internal knowledge.
By shifting the time-frame by which productivity is
computed, we have exposed the inherent worth of
traditionally under-valued tasks — and thus hope to
shift misplaced attitudes/priorities.

Considering long-term productivity requires mini-
mizing total effort of all people involved over the total
lifetime of a project. This does not mean that we are
advocating BDUF (Big Design Up Front)! By explic-
itly integrating over a long period, we accumulate the
incremental value produced by successive iterations.
BDUF is not only unrealistic, it also produces lower
value. It is possible to incrementally design, build
and document research software, and even fake it as
if a rational (up front appearing, omniscient) process
were followed (Smith et al., 2019).

An important component of our definition is an
emphasis on user satisfaction. Quality is crucial,
especially in knowledge work like software, but hard
to directly measure. But we cannot decouple quality
from usefulness: a bug-free software that no one uses
is not particularly valuable. Thus we can legitimately
use a mixed proxy: Adoption by the user community.
This is not foolproof: if poor quality software is the
only one that exists, and it still provides a useful-
enough service, it will be used. Luckily, time and/or
competition can solve that problem.

Our definition can already be used to better under-
stand various tradeoffs in long-term software develop-
ment practices. Naturally, deeper investigations will
inevitably leads to refinements. Ideally, we’ll also
find robust means of approximating our measure of
productivity. This should allow us to more accurately
determine the impact of different processes, method-
ologies and tools on the development of sustainable,
impactful research software.

References

Barry W. Boehm. Improving software productivity.
Computer, pages 43–47, 1987.

G. H. Brundtland. Our Common Future. Oxford Uni-
versity Press, 1987. URL https://EconPapers.

repec.org/RePEc:oxp:obooks:9780192820808.

https://EconPapers.repec.org/RePEc:oxp:obooks:9780192820808
https://EconPapers.repec.org/RePEc:oxp:obooks:9780192820808


P.F. Drucker. Knowledge-Worker Productivity: The
Biggest Challenge. California Management Review,
41(2):79–94, 1999.

FAO. Productivity and efficiency measurement
in agriculture: Literature review and gaps
analysis, food and agriculture organization of
the united nations. http://www.fao.org/3/

ca6428en/ca6428en.pdf, February 2017.

Jr. Frederick P. Brooks. The Mythical Man-month
(Anniversary Ed.). Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 9 edition, 1995.
ISBN 0-201-83595-9.

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli.
Fundamentals of Software Engineering. Prentice
Hall, Upper Saddle River, NJ, USA, 2nd edition,
2003.

Infopulse. Top 10 software development metrics to
measure productivity. www.infopulse.com/, Octo-
ber 2018.

Nortal H.Q. The myth of developer productivity.
https://nortal.com/blog/, 2018.

Spencer Smith, Malavika Srinivasan, and Sumanth
Shankar. Debunking the myth that upfront re-
quirements are infeasible for scientific comput-
ing software debunking the myth that upfront re-
quirements are infeasible for scientific computing
software. https://arxiv.org/abs/1906.07812,
June 2019.

W. Spencer Smith, Yue Sun, and Jacques Carette.
Statistical software for psychology: Compar-
ing development practices between CRAN and
other communities. https://arxiv.org/abs/

1802.07362, 2018. 33 pp.

Doug Sundheim. Are you daydreaming enough?
www.execunet.com/daydreaming-enough/, Jan-
uary 2018.

Frederick Winslow Taylor. The principles of scien-
tific management. New York, London, Harper &
Brothers, 1911.

http://www.fao.org/3/ca6428en/ca6428en.pdf
http://www.fao.org/3/ca6428en/ca6428en.pdf
https://www.infopulse.com/blog/top-10-software-development-metrics-to-measure-productivity/
https://nortal.com/blog/the-myth-of-developer-productivity/
https://arxiv.org/abs/1906.07812
https://arxiv.org/abs/1802.07362
https://arxiv.org/abs/1802.07362
https://www.execunet.com/daydreaming-enough/

	Defining Productivity: a Brief History
	Improving the Definition of Productivity
	Long-Term View
	Outputs: Knowledge and Satisfaction
	Inputs: Labour and Knowledge

	Productivity Redefined
	Conclusion

