
Scientific   Software   Developer   Productivity   Challenges   from   the   Molecular   Sciences  
 
Theresa   L.   Windus, 1,2,3    Jessica   A.   Nash, 2     and   Ryan   M.   Richard 3  

1.    Iowa   State   University,   Department   of   Chemistry,   1605   Gilman   Hall,   Ames,   IA   50011,   USA  
2.    Molecular   Sciences   Software   Institute   (MolSSI),   1880   Pratt   Drive,   Suite   1100,   Blacksburg,  
VA   24060,   USA  
3.   Ames   Laboratory,   2416   Pammel   Drive,   Spedding   Hall,   Ames,   IA   50011,   USA  
 
Enabling   developer   productivity   in   a   broad   community,   such   as   the   molecular   sciences   (MS),   is  
a   complex,   multi-dimensional   challenge.    If   it   was   easy   to   solve,   we   would   have   done   it   by   now!  
In   this   whitepaper,   we   will   address   just   a   few   of   the   issues   that   we   see   in   our    MS   community  
and   a   few   of   the   solutions   that   we   are   trying   to   implement.  
 
First,   understanding   what   one   means   by   developer   productivity   can   be   useful.    There   is   usually  
some   thought   that   the   developer   can   quickly   develop   software   that   accomplishes   some   goal.  
But   does   this   thought   include   quality,   reusability,   and   sustainability?   Maybe   the   developer  
doesn’t   need   or   want   to   have   their   work   be   reusable!   This   is   especially   true   when   the   developer  
is   just   learning   to   code   or   doesn’t   want   the   responsibility   and   cost   of   maintaining   their   software  
for   someone   else.    They   may   just   want   a   one-time   capability.    They   certainly   want   to   get   the  
right   answer   for   the   problem   they   are   considering,   but   may   not   worry   too   much   about   the   edge  
cases.    Unfortunately,   often   these   types   of   codes   do   get   used   by   the   developer   or   by   someone  
else   further   down   the   line   and   then   the   software   needs   to   be   either   fixed   to   be   more   friendly   (i.e.,  
providing   documentation,   testing,   etc.)   or   developed   again.    These   codes   might   be   prototypes  
that   eventually   become   “the”   code   or   they   get   passed   along   from   one   student   to   the   next   to   help  
save   some   time.    A   significant   part   of   the   legacy   software   that   is   developed   in   the   MS  
community   has   had   this   type   of   background.    Of   course,   there   has   also   been   significant   effort   in  
the   MS   to   develop   more   community   based   codes.    Even   with   this   software,   though,   there   is  
often   not   enough   time/money   to   develop   software   that   uses   strong   software   engineering  
principles   to   ensure   continued   sustainability   of   the   software.    For   the   sake   of   this   whitepaper,  
let’s   assume   that   developer   productivity   includes   quality,   reusability,   and   sustainability   as  
parameters   that   must   be   included   to   have   effective   developer   productivity.  
 
Once   we   have   an   idea   of   what   developer   productivity   means,   we   then   have   to   determine   how  
we   are   going   to   measure   that   productivity.    This   is   another   issue   that   can   be   very   difficult   to  
answer.    For   example,   one   very   simplistic   metric   might   be   the   number   of   lines   of   code   per   hour  
that   a   developer   can   produce.    This   metric,   however,   by   itself   does   not    include   ideas   of   reuse  
(perhaps   the   best   code   is   a   few   lines   from   the   new   developer,   but   uses   functionality   from   other  
libraries   that   required   time   to   understand)   or   quality   (in   the   extreme   case,   anyone   can   pad   a  
simple   code   with   a   lot   of   lines   that   don’t   do   anything   useful   and   may   actually   produce  
nonsensical   results).    Another   metric   might   be   the   number   of   tests   that   are   associated   with   the  
new   software.    This   metric   at   least   includes   the   idea   of   quality,   but   certainly   doesn’t   ensure   the  
quality   of   the   code.    Often   we   use   fuzzy   measures   that   incorporate   the   idea   of   time,   correctness  
of   results,   good   software   engineering    practices,   usability/reusability,   and   lack   of   bugs.    While  



this   whitepaper   does   not   seek   to   solve   this   problem,   it   is   certainly   an   issue   that   requires  
discussion.  
 
In   the   MS   community,   there   has   been   a   growing   revolution   in   the   way   that   software   is   being  
developed.    However,   there   are   still   multiple   challenges   to   be   addressed.    In   the   realm   of  
developer   productivity,   there   is   still   a   large   tendency   to   design   and   implement   new   code,   even  
when   existing   codes   are   available.    A   significant   part   of   this   is   that   the   rewards   (at   least   in  
academia   and   national   labs)   for   developing   new   software   are   much   higher   than   contributing   or  
using   existing   software.    There   is   still   a   perception   that   “owning”   a   code   means   that   the   owner   is  
the   main   and   perhaps   only   developer   -   being   a   contributor   can   require   a   large   effort   on   the  
contributor’s   part   (as   well   as   recognition   from   the   owner)   to   acknowledge   the   value   of   the  
contributing   developer/software.    Papers   are   still   recognized    as   one   of   the   leading   metrics   for  
productivity   and   if   you   are   not   the   first   or   last   author,   your   contribution   can   be   lost   (the   author  
order   is   different   in   other   fields,   but   this   is   the   primary   order   in   the   MS   field).    While   software   as  
a   deliverable   is   starting   to   be   recognized,   there   is   still   the   challenge   of   delineating   one’s  
contributions.    Statistics   tools   that   are   available   online,   like   GitHub   statistics,   can   help   with   this   -  
although,   as   noted   above,   lines   of   code   don’t   necessarily   translate   into   quality   of   code.    Another  
significant   reason   for   not   using   someone   else’s   code   is   that   it   can   take   a   significant   amount   of  
effort   to   understand   the   software   before   making   a   contribution.    There    is   a   perception   that   it   will  
take   longer   to   learn   the   existing   software   and   make   any   necessary   changes   than   it   will   take   to  
create   the   software   from   scratch    (this   perception   holds   even   for   complex   software   where   it   is  
probably   not   true).    Certainly   poor   documentation,   lack   of   developer   information   for   the  
community,   and   lack   of   forethought   on   the   reuse   of   software   can   contribute   to   this   perception.  
Combined   with   the   existing   reward   system,   these   sociological   issues   are   difficult   to   overcome.   
 
The   Molecular   Sciences   Software   Institute   (MolSSI)   is   trying   to   change   these   attitudes   by  
acknowledging   that   software   development   and   reusability   is   a   key   to   enabling   new   theoretical  
and   computational   methodologies.    The   attitude   of   thoughtful   reuse   of   software   can   change   the  
landscape   for   developers   and   help   them   to   be   more   productive.    For   example,   the   development  
of   excellent   basic   linear   algebra   libraries   (BLAS)   and   other   mathematical   solver   libraries   in   the  
mathematics   and   computer   science   communities   have   enabled   most   MS   software   developers   to  
rely   on   these   libraries   instead   of   creating   their   own   version   (although,   even   here   there   are  
reasonable   exceptions).    Having   building   block   components   within   the   MS   community   has   been  
a   goal   for   many   years   and   has   yet   to   be   accomplished.    In   addition   to   the   reasons   given   above,  
there   are   also   the   challenges   of   having   a   dependence   in   your   software   stack   on   software   that  
might   not   be   well   supported.    So,   even   if   we   choose   to   use   someone   else’s   component   or  
library,   we   will   have   a   native   implementation   in   the   code   in   case   that   component   doesn’t   work   as  
advertised   or   if   the   maintainers   decide   not   to   support   the   component   anymore.  
 
MolSSI   is   also   providing   educational   resources   and   is   reaching   out   to   a   broad   range   of   people   in  
the   MS   community   to   help   them   provide   better   software.   The   hope   is   that   better   software   will   be  
more   likely   to   be   reused   in   the   community   -   thus   enabling   productive   developers   to   use   other  
people’s   libraries   instead   of   developing   their   own   ( http://education.molssi.org/resources.html ).  

http://education.molssi.org/resources.html


MolSSI   resources   and   workshops   provide   information   about   careful   design   to   enable   cross   use  
of   modules,   information   about   existing   and   evolving   standards   and   their   development,   ideas   of  
interoperability,   use   of   version   control,   continuous   integration   testing,   unit   testing   (and   other  
testing   models),   software   review,   software   dissemination,   community   building,   and   other   best  
practices.    Many   of   these   workshops   are   attended   by   the   younger   generation   of   developers  
(undergrads,   graduate   students,   and   postdocs)   who   are   more   open   to   the   ideas   of   software  
reuse.  
 
Another   challenge   of   developer   productivity   is   the   compiling   of   software   and   the   dependencies  
associated   with   different   libraries.    Many   developer   hours   are   spent   in   setting   up   the   appropriate  
build   system   and   making   it   run   with   many   different   hardware   and   software   architectures.    In  
addition,   this   is   one   of   those   “thankless”   tasks   where   the   main   reward   is   associated   with   the  
ease   of   others   compiling   the   code.    One   does   not   often   get   thanked   for   making   the   code  
compile,   but   one   certainly   hears   about   it   if   the   code   does   not   compile   or   does   not   compile   easily!  
C++   lacks   a   standardized   build   system   and   package   manager,   which   in   turn   makes   it   difficult   to  
create   reusable   C++   libraries   and   packages.   CMake   has   become   the   de   facto   standard   for  
writing   build   systems   for   C++   programs;   however,   CMake's   generality   and   steep   learning   curve  
can   make   it   difficult   to   write   robust   and   reliable   build   systems.   Often   a   developer   will   take   a  
CMake   system   from   other   projects   (whether   they   are   fully   appropriate   for   their   software   or   not)  
and   spend   many   hours   adjusting   and   tweaking   the   CMake   files   to   make   the   compile   work   on  
their   specific   system.    Then   they   do   the   same   thing   when   an   issue   comes   up   when   trying   to  
compile   on   a   different   computational   platform.  
 
As   part   of   the   NWChemEx   project   in   the   Department   of   Energy   Exascale   Computing   Project,   we  
have   created   a   suite   of   CMake   modules   called   CMakePP   ( https://github.com/CMakePP/ ),   which  
focuses   on   automation   and   boilerplate   reduction.   Using   CMakePP:   dependencies   can   be  
downloaded,   built,   and   installed   with   as   little   as   their   URLs;   libraries   and   executables   can   be  
added   simply   by   providing   the   path   to   the   directory   containing   the   source   files;   and   packaging  
files   are   automatically   generated   for   installed   targets.   CMakePP   wraps   this   functionality   in  
user-friendly   functions   that   require   minimal   input.   CMakePP   and   other   compiling/portability   tools  
such   as   Spack   and   Docker   help   with   the   compiling   and   deployment   of   software.  

https://github.com/CMakePP/

