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1 Introduction

Developer productivity for scientific software is essential in order to address changing timelines in
scientific computing needs and an increasing set of science problems that can benefit from large-scale
computational approaches. Generally, computational approaches in science were considered to be
long-standing and less time-sensitive; this made them worthy of multi-year efforts as exemplified
by DOE SciDAC projects. There is now a newfound urgency to analyze massive quantities of data
and perform large calculations for societal benefits. Such research efforts include the biological and
environmental sciences, where the complexity and multiple scales of systems, together with growing
dataset sizes from high-throughput experimental methods, have created major bottlenecks [1]. Urgent
needs include research in sustainability, genomics [2] and healthcare research such as recent responses
to the COVID-19 pandemic [3]. In addition, the emergence of data-driven and AI-driven solutions to
these urgent problems has placed a higher premium on the use of highly optimized, parallel software.

Improving developer productivity has been a long-standing challenge that is deeply impacted by
emerging hardware platforms, workforce expertise, and programming tools. We are currently at a
critical point in all three aspects of this challenge. In terms of hardware platforms, the “free ride” of
automatic improvements in efficiency and cost from Moore’s Law and Dennard Scaling has ended.
Sustained improvements now require specialized, post-Moore accelerators and radically different com-
puter architectures. Therefore, high-performance computing (HPC) software development, which has
always been the realm of specialized experts, is now becoming even more highly specialized. However,
the development of scientific software for domain science is not performed by HPC experts, but by
domain scientists with highly specialized knowledge of their modeled systems and the structure of
their data. In addition, the current state of programming tools for scientific computing is inadequate
for rapid creation of new applications on new hardware platforms, especially for computational sci-
entists who are not HPC experts. In this paper, we advocate for the newly emerging approach to
developing scientific software: an HPC-based Python ecosystem.

Python is a widely used high-productivity language, second only to JavaScript in popularity, but
far better suited to scientific software than JavaScript. It allows for a fast code production schedule,
even for domain scientists who are not HPC experts. The Python community has worked extensively
to circumvent Python’s performance obstacles by introducing a rich collection of high performance
libraries. Python serves several different purposes in HPC scientific software development. It can be
used as a wrapper or “glue” to combine different languages and traditional HPC libraries, and to de-
velop workflows and use data science and machine learning toolkits. There are many Python libraries
that can be quickly parallelized or offloaded. Python itself can be extended with another program-
ming model for parallelism, for example, CuPy to accelerate NumPy and Dask with asynchronous
task-parallelism across multiple GPUs or nodes. Additionally, Python tools like Jupyter Notebook
enable interactive programming to steer computations in ways beyond traditional file I/O [4].

2 Motivating Use Cases

This section summarizes multiple use cases where Python has been essential to productivity in rapidly
developing scientific software solutions to urgent problems.
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2.1 Molecular Docking for Drug Discovery

To examine developer productivity in a recent and urgent use case, we look at the use of Python
in a current research effort at the Oak Ridge National Laboratory (ORNL) to develop antiviral
therapeutics against the SAR-COV-2 virus [5, 6]. This includes the use of the Summit supercomputer
to screen drug candidates for the SARS-CoV-2 virus with molecular docking calculations. Screening
datasets of millions to billions of ligands against the viral proteins is a big data problem and a time-
sensitive endeavor. Engineering the deployment of this large, but intuitively parallel, computation
in a reasonable amount of time is an HPC problem. However, these types of calculations were
not designed to be treated by HPC approaches, and thus are file-based, and require novel software
solutions in order to make this type of scaling possible and rapidly attainable. Screening billions
of compounds experimentally is impossible, but such a computational screen is attainable and has
been performed in under 24 hours on Summit. Here we how describe the use of Python helped to
dramatically and rapidly increase productivity in this effort.

The usefulness of Python for this project can be observed in three main areas: data pre-processing,
workflow management, and post-processing. Each area benefits from HPC tools and libraries to
exploit parallelism within and across nodes. During the initial data processing, the program must be
able to ingest data quickly, from billions of separate files that are available from compound databases.
As distributed, the input ligand data files are small text files distributed in a collection of compressed
tarballs and must be converted into a format that the docking program can use. Therefore, before
docking 1 billion ligands, all of these files had to be extracted from their tarballs, converted, and
repackaged in new tarballs. The Python ecosystem already has utilities to perform all of these tasks.
The tarfile library can read, manipulate, and create new tarfiles entirely in memory. With the
dataset on a network file system, minimizing the amount of file operations is critical to performance.
The joblib library allows for parallel tasks to be executed within a node, spawning a separate
interpreter on each CPU core to preprocess the text files and then accumulate them into new output
tarballs. To distribute work across multiple nodes in an HPC cluster, a library such as mpi4py was
used. This harnessed HPC-familiar MPI frameworks in Python and did so in a way compatible with
many Python libraries. Additionally, since the preprocessing script was a Python script, this allowed
the conversion of this script from a standalone program into a loadable module with minimal effort,
greatly speeding up the conversion process. Python also provides a means to quickly prototype a
framework for launching executables and creating an easy workflow on Summit. This includes pre-
staging data to the nonvolatile memory (NVMe) on each node, before computations are run. Python
was used to wrap Autodock-GPU [7] to run one docking per NV100 GPU and seven Power9 cores of
Summit. Lastly, after the simulations are run, the data is post-processed. Output from AutoDock
can also be used to train and test machine learning (ML) models that predict more accurate binding
affinities from the docked poses. Previous non-Python implementations of these types of models
were single-core and not scalable to big data problems. Python allows for easy scalability. The cuML
library, an NVIDIA RAPIDS project, can be used to offload ML tasks to GPUs, and parallelization
can also be enabled with Dask [8].

2.2 Bringing GPU Acceleration to Predictive Biology

Currently the genome bottleneck in predictive biology creates a technology gap for both basic bio-
sciences and bioengineering applications [2]. We are limited in our ability to translate the vast amount
of gene sequencing data into meaningful predictions of biological function. The ability to compu-
tationally model protein structure from sequences using GPU acceleration is attractive, as is the
modeling of protein-protein interactions. Many of the cutting-edge solutions currently available use
Python because of user-friendliness, ability to handle heterogeneous data structures, and the powerful
modules available for AI applications. In addition, Python bindings allow users to use their software
as an API, thus being able to develop new applications using it. For example, we are currently
working on a program that can arrive at a final folded protein structure from a set of inferred contact
distances using an in-house code that calls the OpenMM [9, 10] molecular mechanics program [11].
OpenMM is able to efficiently use the GPU with highly optimized OpenCL and CUDA kernels, but is
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called from a Python program that makes it easy to create one’s own simulation recipes. In order to
make such software work well on HPC, the top Python wrapper must call underlying code that uses
relevant compilers and linkers to use the HPC facilities, such as C++ with CUDA. In addition, the
ability of Python to easily call external programs with a subprocess allowed for the model building
steps for this program to be executed with a different code and seamlessly incorporated into the
program. Currently, we are exploring the use of directive-based (OpenMP/OpenACC) offloading
to GPU with Python/Cython code bases, including the LightDock [12] protein docking program.
Code developers must devote extra effort to make these codes usable in HPC in an optimized way,
however, and thus success in porting existing Python programs to HPC may vary depending on the
modularity and structure of the original code.

2.3 Abstract Algebra Operations for Big Integers

Integers larger than the int64 type, used in applications like cosmology, hash tables, probability
simulations, and math sequence exploration, do not fit nicely into traditional NumPy arrays and
often become a computational bottleneck. We did some recent work on a Python library for abstract
algebra operations (additions, matrix multiplications, etc.) that support big integers. Python made
the complex abstract algebra program easier to understand, prototype, and modify. Libraries like
SymPy, mentioned below, provided application-specific functions. The Dask library allowed us to
easily partition our arrays, perform data-parallel work, and reduce our arrays in unique user-defined
ways. It also made our operations scalable within a single node and across multiple nodes.

3 HPC Python State of the Art

3.1 Python Compilation

Python’s reference interpretation is CPython, which compiles Python code into bytecode before
interpreting it. This is unoptimized and can cause performance drag. PyPy [13] is a faster interpreter
that uses just-in-time compilation instead. It enables a much higher performance of pure Python
code, but cannot use external libraries written in the Python C API, like NumPy. An alternative
solution to the interpreter issue is cross-compilation to other languages. Cython [14], for example,
compiles Python to C and C++. Cython is a statically compiled language that is technically a
superset of Python, with performance that comes closer to that of C. Numba [15] is a just-in-time
compiler that can be invoked with simple decorators. Using LLVM, it compiles Python to machine
code. Numba also supports automatic parallelization on CPUs and GPUs.

3.2 Libraries and Frameworks

NumPy [16, 17] supports efficient implementations of large, multi-dimensional arrays and mathe-
matical functions for operating on these arrays. It is perhaps the most widely used Python library
for scientific computing. Python does not have its own array structures, so many of the popular
scientific libraries for HPC are built upon NumPy. This includes SciPy [18, 19], for scientific and
technical computing, SymPy, for symbolic computation, and matlibplot, for plotting. Pandas, which
provides more data structures for easy data analysis, manipulation and I/O, also depends on Numpy.
However, NumPy cannot process data exceeding local memory. Dask [20], a library for parallel and
distributed computation, extends Python, NumPy, and Pandas data structures to enable “out of
core” computations. Dask’s built-in schedulers allow easy portability between personal machines
and clusters of various scale. Dask also includes a convenient visualization dashboard. RAPIDS [21]
is an open-source library for running Python data science and analytics on NVIDIA GPUs, with
minimal changes. Legate [22], a separate NumPy implementation, has a similar approach. It accel-
erates and distributes NumPy programs to machines of any scale. CuPy [23] is a matrix library that
is highly compatible with, and can even act as drop-in replacement for NumPy, while providing the
advantage of GPU-accelerated computing. Other general-purpose parallel and distributed computing

3



systems include pySpark, a Python API for Apache Spark [24], and Ray [25], a process-based execu-
tion framework with an API based on dynamic task graphs. Ray is packaged with domain-specific
libraries for machine learning.

3.3 HPC Communication

Like most HPC languages, Python can use the MPI library. The most notable implementations
is the mpi4py package [26, 27]. MPI for Python (mpi4py) is the most complete MPI library in
Python, with the closest C syntax match. Similarly, a Python interface for UCX [28], a low-level
high-performance networking framework, is provided in UCX-py which supports a client server model
to establish communications. The Process Management Interface - Exascale (PMIx) interface [29]
defines interactions between applications and the system management stack.

3.4 Related Technologies

The Jupyter Notebook [30] is an open-source web application that allows interactive Python use,
in addition to many other languages. Users can create and share live code, equations, visualiza-
tions, and narrative text. It is an evolution of the program previously called IPython, a command
shell for interactive computing. The Jupyter Notebook is able to support parallel and distributed
computing through normal Python libraries, either simple libraries built into Python, or more so-
phisticated packages such as Dask. Julia [31] is a programming language designed with HPC in mind,
circumventing many of Python’s original performance roadblocks. It has high-level syntax, dynamic
typing, just-in-time compilation, and supports interactive use. It has built in support for concurrent,
parallel, and distributed computing, as well as direct calling of C and Fortran code. Arkouda [32]
is a distributed computation framework for exploratory data analysis. It has a Python front end,
NumPy-like syntax and a Chapel back-end. It can be used interactively to issue massively parallel
computations on distributed data.

4 Looking to the Future

Python is poised to improve HPC developer productivity in many more ways in the future. For
example, an underlying science problem in computational seismology is being solved by the Python
package SeisFlows in the SPECFEM project with 3D seismic data processed by Spark [33]. NERSC
is using Python (CuPy, specifically) to make their supercomputer hardware and its accompanying
GPUs more accessible to (non-computer) scientists working in their experimental and observational
data facilities [34]. The Library for Evolutionary Algorithms in Python (LEAP) toolkit provides
an accessible and parallel way to run evolutionary algorithms, a type of machine learning, for re-
searchers, engineers, and educators alike [35, 36]. In fact, there are many scientific domains, from
natural language processing [37] to high-energy physics and environmental science [38], that are bene-
fiting from Python development in tandem with AI and HPC. At ORNL, current research directions
include ensuring that the Python ecosystem and libraries (like Dask and RAPIDS) are available
on the Summit supercomputer and portable to different systems. Often, a library is created as a
vendor-specific solution (like CuPy from NVIDIA), and not always easily portable to other vendor
platforms. Scalability, especially across different nodes, is also an important consideration. The abil-
ity to increase the amount of available data, whether through data generations (simulations, etc.) or
through better data storage and Python manipulation, is also important research, especially for ma-
chine learning. Clearly, Python provides a productive and efficient solution to the issue of improving
scientific software development.
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