
Challenges of and Opportunities for a Large Diverse Software Team 

U. M. Yang1, C. Balos¹, P. Luszczek², S. Osborn¹, J. Willenbring³ 

What is a software team? It is a group of several people (at least two) who work together towards 

the common goal of creating/improving/maintaining a software product. So, the main ingredients 

of a software team are first people, second collaboration, third a software product, fourth a 

common goal. To achieve success, such a software team requires members with the appropriate 

skills, an agreement on how to collaborate, e.g., a predetermined set of rules, equipment and 

tools for creating a useful software product (e.g., a library), which generally includes computers, 

debugging and performance tools, etc., and finally a goal that motivates the team to charge ahead, 

such as customers that need the product to accomplish their own larger goal, e.g.  a simulation 

that advances science. The more inspiring the goal the better. 

When all these things are in place great things can happen. One of the authors specifically 

remembers such a team: “There were four of us with the appropriate skill sets. We worked 

together towards the common goal of mathematical software needed by application teams for a 

new computer architecture, and we made rapid progress. What made this collaboration so 

successful and rewarding? There was mutual respect and trust. This enabled us to have open 

discussions without fear that there would be any putdowns. Each input was listened to and 

considered. Although we were a diverse team, we understood each other well.  Each person had 

a specific task and skill set that complemented the rest of the team and was crucial to get the 

work done. We knew that we needed each other. While the members were highly skilled, there 

were no `big egos’, nobody tried to get ahead of the rest. We all worked for the whole team to be 

successful. Finally, we also worked hard, but because we enjoyed the collaboration and pursuit 

of the goal, hard work was not a burden.” 

In the context of this white paper, we will consider a large diverse software team. While the 

definition of a software team still applies, we are now looking at a team consisting of at least thirty 

people. Many of the issues we will discuss here will also apply to smaller teams, but a large team 

has to deal with additional issues. In this case, certain team dynamics are also more complicated 

because the team is really a team of teams, with each sub-team working primarily on a different, 

largely independent software product, but also working together on a larger project that all the 

individual software products are part of. We will discuss challenges and opportunities arising for 

such a large team using the example of the Extreme-scale Scientific Software Development Kit 

(xSDK) project (xSDK.info), focusing on first technical and then cultural challenges. 

The xSDK team works toward the seamless build and use of a variety of independently developed 

highly efficient interoperable math libraries to support scientific applications. Each of these 

libraries have been developed by smaller independent teams using their own software strategies 

and styles. Achieving a common build and sustaining and creating interoperabilities among these 

 
1 Lawrence Livermore National Laboratory. Prepared by LLNL under Contract DE-AC52-07NA27344. 
² University of Tennessee at Knoxville 
³ Sandia National Laboratories 



libraries where appropriate and useful is very challenging. To achieve this goal the team created 

a set of guidelines, the xSDK community policies, that each member package has agreed to 

follow. These rules consist of mandatory policies that address topics such as building, installing, 

testing, portability, licensing, namespacing, repository access and more, and help to improve 

software quality, usability, and sustainability of the individual libraries and ultimately the whole kit. 

There are also a few recommended policies that are not currently enforced but might be at a later 

time. These rules address a lot of potential issues that can interfere with the common build and 

interoperability of the software but are not too heavy-handed to interfere with the software 

strategies of the individual libraries. These policies are regularly reviewed with input of the broader 

community, so they do not become outdated. They have also served as a model for similar 

policies for other software development kits, e.g., the E4S software stack (E4S.io). 

Dealing with a large set of math libraries and producing regular xSDK releases comes with its 

own set of challenges. The development and testing of the whole xSDK product is very 

challenging since the individual libraries continue to be improved and developed. So, the overall 

software stack is continually in flux. We are now taking steps to work toward a faster, and more 

people-efficient workflow for development and testing within the xSDK. Currently Gitlab CI is 

employed to test the entire xSDK on several different platforms. Additions are being made to the 

testing capability by adding new tests, and layers of testing, e.g., only testing a subset of xSDK 

packages to easier diagnose potential issues. The primary goal of the CI testing is to ensure the 

current release version of the xSDK is stable. However, an important secondary opportunity is to 

test with the development versions of various libraries. This will enable potential issues, like API 

changes, to be identified sooner and is critical for long-term sustainability. Since we have not 

found an optimal solution yet, we continue to discuss viable approaches for this problem. We 

have also developed an example code suite exhibiting interoperabilities between libraries. It 

serves both as a testing tool as well as a training tool for users of the xSDK. Extending this suite 

through new examples brings additional complications due to the continuous, mostly autonomous 

development of xSDK member packages. Due to the challenges associated with keeping 

development versions of all xSDK member packages working together, there is not currently a 

development version of the example suite. Using this model, when new interoperability features 

have been added to individual xSDK libraries, but those features are not yet in a released version 

of xSDK, either the examples must be built separately (not with the Spack package for the xSDK-

examples) or more frequent releases of the xSDK are necessary. This is problematic as 

synchronizing releases with interoperating libraries that have API changes is difficult and time-

consuming. Additionally, the individual libraries have independent release schedules that make 

coordinating for a new xSDK release challenging. Another option could be to modify the example 

test suite to use Spack variants associated with every xSDK member package, but this approach 

would increase the complexity of the example suite significantly.  

The xSDK team consists of over fifty software developers, computer scientists and computational 

mathematicians from various national laboratories, universities, and industry. The size of the team 

and the location of the members brings challenges, but also opportunities. A team of this size 

brings with it a large network of contacts to outside experts, which is helpful to get additional input 

and advice and can result in improved quality. The diversity of the team leads to new insights, 



allows members to evaluate different perspectives, to think outside the box and to ultimately come 

up with new solutions that uniform teams might miss. Thus, we should celebrate our differences. 

Since the xSDK team is spread across the whole United States and even includes members from 

Europe, we need to overcome distances and deal with varying time zones. Frequent in-person 

meetings are generally not possible due to cost and logistics. Regular meetings need to now be 

done virtually, using applications like Zoom, WebEx, Blue Jeans, etc. This is generally easier if 

the team was able to work in-person before, since they still have the visual image of in-person 

meetings in their minds, but it is much harder for a person that was unable to attend the past in-

person meetings or a team that is newly created under these circumstances.  It is helpful to be 

able to use cameras so one can see facial expressions and just to know what a team member 

looks like, for when we run into them at a conference or workshop: we can recognize them without 

official introductions. It also provides a visual in our mind of who the other team members are. 

However, it is not always possible to turn on cameras, be it due to bandwidth issues, or if the 

team is very large, as in the case of the xSDK team, there is not sufficient room on the screen to 

see everybody at a reasonable size.  Nevertheless, regular virtual meetings are necessary to 

keep the team on track, motivated and provide cohesion. 

Having been involved in several very large teams, we have found that having at least an initial 

meeting of all team members at a specified location over a few days is very helpful to get to know 

each other and start building trust. While this was not the case for the current xSDK team, it was 

the case for the IDEAS team, from which the xSDK team originated.  The IDEAS team started off 

with a large meeting of the whole team in San Francisco, which lasted several days. This was a 

very important meeting since it allowed the team members to get to know each other outside of 

the online meetings and collaboration that dominated the work since then. Not everything went 

smoothly at this meeting. One of the challenges in bringing a variety of people from different 

backgrounds together is to learn to communicate. Misunderstandings can easily happen. It is 

important to develop a mutual vocabulary. It is easy to assume that another person understands 

our words the way we would, however their background and upbringing are important factors 

since they affect their view and understanding of what is being said. It is crucial to overcome these 

communication barriers. Team members need to get to know each other’s characters. Ultimately, 

the San Francisco meeting was a fruitful meeting. It started the process of developing a common 

vocabulary and building trust and respect towards each other. 

It is also good practice to take advantage of opportunities at conferences and workshops, which 

are attended by most of the team members to arrange for small-group meetings and dinners to 

continue building in-person relationships between members in addition to virtual meetings. 

Building such familiarity is important to create a culture of openness and honesty. Creativity is 

best when people can take their guards down and there is no need to feign engagement. People 

can speak freely without fear of judgement and are invited to substantive conversation. 

Working together on a common goal will also strengthen professional relationships and build up 

the team. Overcoming technical challenges requires collaboration on a technical level. 

Recognizing that we often need each other’s help keeps us humble and generates respect 

towards those who have the necessary skill and make our own work faster and/or easier. Seeing 



progress being made and taking note of smaller achievements helps to keep the team motivated. 

Finally, we should not forget the overarching goal to stay focused. For the xSDK team, this goal 

is to support application teams to reach exascale performance.  

In summary, while technical advancements are essential for a successful software team, the 

human factor is just as important. It can be the key that leads to final success or the hindrance 

from reaching the goal. A thriving team where all are on the same page striving towards an 

excellent software goal, working together to make it happen, can lead to great results. However, 

elements like personal ambition, envy, boredom, burn-out, etc. can make such a team ineffective 

or even fail. While working together toward a common goal, we share successes and new 

discoveries that help us refine our software. Helping to mutually improve each other’s libraries 

while giving credit where credit is due increases the quality of the whole product and moves us 

closer to the goal of achieving great science at exascale.  

 


