
The Community is the Infrastructure:

A Short Discussion of the PETSc Community

Mark Adams1, Jed Brown2, Satish Balay3, Victor Eijkhout4, Jacob Faibussowitsch5,
Fande Kong6, Matthew Knepley7, Scott Kruger8, Oana Marin3, Richard Tran Mills3,
Todd Munson3, Patrick Sanan9, Barry F. Smith10, Hong Zhang11, Hong Zhang3, and

Junchao Zhang3

1Lawrence Berkeley National Laboratory
2University of Colorado at Boulder

3Argonne National Laboratory
4The University of Texas at Austin

5University of Illinois at Urbana-Champaign
6Idaho National Laboratory

7University of New York at Buffalo
8Tech-X Corporation

9ETH Zurich
10Argonne Associate, Argonne National Laboratory

11Illinois Institute of Technology

June 18, 2021



Abstract

Hard and soft infrastructure work in tandem to accomplish a particular enterprise. Soft infras-
tructure – the formal and informal culture, institutions, standards, practices, and procedures that
support an enterprise – is often more important to human endeavors than hard infrastructure. For
example, a highway system’s hard infrastructure (e.g., the roads) could not satisfy its enterprise
– effective transportation — without the corresponding soft infrastructure of regulations, policing,
driver habits, maintenance crews, and so forth. The relative cost and importance of the different
aspects of infrastructure evolves, particularly during the development stages, from planning, to
construction, to commissioning, operation, maintenance, and upgrading.

The design, development, support, and dissemination of computer software is an archetypal
example of soft infrastructure, regularly being the tail that wags the dog of computer hardware
(prototypical hard infrastructure). Quantifying soft infrastructure is more difficult than hard in-
frastructure. Thus, it is often ignored or under-emphasized when analyzing or proposing changes
to human-developed systems. In particular, government understanding and funding of scientific
soft infrastructure lags well behind that of hard infrastructure (for example, experimental devices
such as accelerators). In fact, the funding for soft infrastructure often only flows as a by-product
of the funding for tangentially-related hard infrastructure.

This paper explores the soft infrastructure of the Portable Extensible Toolkit for Scientific
computing (PETSc), which we dub the PETSc community. To address the needs of next-generation
science the PETSc community is simultaneously engaged in developing additional features and
algorithms (construction and commissioning), supporting a vibrant set of users and developers
(operation), and maintaining and upgrading existing software. The informal PETSc community
agglomeration across these activities is the most valuable asset of PETSc. While we briefly discuss
some of the technology applied to PETSc’s development and support, the dominant story is that of
PETSc community building and strengthening, while considering the lessons we have learned that
may apply to other software development projects.



To meet the technological challenges of the 21st century, the ongoing revolution in data man-
agement needs to be mirrored by a revolution in scientific simulation. Advances in manufacturing,
energy infrastructure and generation, and so forth must be underpinned by flexible, scalable, multi-
physics multiscale simulation capabilities. In turn, this simulation technology rests on a foundation
of numerical algorithms and software. This foundation rises to the level of hard infrastructure, such
as an energy grid, semiconductor foundry, or particle accelerators, in importance, but realizing its
funding and organizational models will probably be different. It must stand the test of time, sup-
port diverse interests, and incorporate cutting-edge research while running on the most advanced
hardware. This will require significant investment for development and upgrades, but more im-
portantly, it will require human investment and new ways of organizing the software development,
support, and maintenance effort.

Academia is a natural home for leading-edge research on algorithms and software, but faculty
incentives are geared toward short-term priorities, which make supporting such decade-long efforts
unmanageable. Likewise, industrial efforts benefit from a close association of research with practical
application but have often foundered due to a closed development model and narrow customer focus.
National laboratories, on the other hand, have a forward-thinking policy toward funding long-term
software programs, but can be insular, focusing almost exclusively on internal customers. Sustain-
able infrastructure requires combining the strengths of each type of institution while mitigating the
weaknesses, creating a value proposition for a diverse set of international stakeholders to engage
and contribute to the community effort.

Though we think of numerical software emerging as part of soft infrastructure, some of the
early, influential numerical software packages, including EISPACK, LINPACK, and LAPACK, were
based on the plan-propose-fund-build-use model, much like traditional hard infrastructure [7]. The
packages are more exemplars of the hard infrastructure development model than soft. Today’s
numerical software libraries (in fact, more generally, most software today) are no longer plan-
propose-fund-build-use. They require comprehensive maintenance, extension, and support systems
as hardware, software, user, and community needs evolve rapidly. Scientific software libraries are
soft infrastructure. There is a large collection of writings on software communities, the following
list only scratches the surface: [6], [4], [2], [8], [3].

The PETSc community as infrastructure PETSc, apart from being a popular library for
scientific computing, is a group of people dedicated to developing, extending, maintaining, and
using the library to solve scientific and engineering problems. The PETSc community has strong
representation in laboratories, academia, and industry. The PETSc community boosts broader
priorities for members in organizations with more limited goals, while also providing continuity of
support and vision for members in institutions with shorter time horizons.

PETSc was not purposefully designed to support long-term, community software infrastructure.
Rather, work on the software inspired the creation of a set of practices to enable a small development
team with large ambitions and a long event horizon to develop and support software capable of
solving problems of interest to the original developers and their collaborators. However, these
practices, reviewed below, appear to have wider benefits, and certain community properties could
serve as a template for long-term software infrastructure.

• Swift, in-depth engagement on the communication channels,1 especially for new users.
• Encouragement and opportunities for anyone to contribute to the software and documentation.
• Providing a virtual institution for collaboration.
• Extensible interfaces that enable people interested in mathematics and algorithms to experi-

ment and deploy research.

1Mailing lists, issue boards, and so forth.

1



• Developer autonomy to pursue topics about which individuals are passionate.
• Strong ties to academia, industry, and laboratories worldwide. Being spread throughout the

world the community allows a real-time transfer of knowledge across institutions and appli-
cation fields. This assures algorithmic development, preserves its state of the art status, and
benefits the scientific community at large. This may be difficult to achieve in a moderate sized
dedicated commercial software group.

Engagement PETSc places a high premium on engagement and support of users, in no small
part because most developers are also users of the library. Moreover, to maintain the vitality of
the library, new algorithmic developments must be rapidly integrated, bugs promptly fixed, and
awkward constructions removed. This requires PETSc to establish a high level of user trust, com-
municating that, even in the face of rapid evolution, the library will be well-supported, and user
code will continue to run with help from the community. A precondition of establishing trust is to
create a welcoming environment for new users and developers. The PETSc community includes a
wide range of professions, backgrounds, and levels of involvement, with individual members often
participating in several ways over the years. Engagement is key to disseminating tacit knowledge
and developing the skills and social support for users to become contributors as developers and men-
tors. The PETSc community has developed a broad base of people with expertise and kindness to
reduce and report bugs, to mentor newcomers, and contribute in other ways. However, the commu-
nity lags in racial and gender diversity relative to broader computational science. We attribute this
to structural deficiencies, inertia, and insufficient outreach. The community recognizes this weak-
ness and has become more deliberate in recent years, establishing norms and proactive outreach to
build more diverse representation, to be responsive to historically-unrecognized stakeholders, and
to benefit from social and technical contributions.

Collaboration PETSc’s community helps members find funding, access expertise, and transition
between roles in the project. One of the greatest difficulties in maintaining a coherent software
project over decades is providing a career path for contributors. PETSc has given academic con-
tributors a solid foundation for advancement via awards, the highly-cited users manual, professional
recognition, and many productive collaborations born from PETSc development, maintenance, and
user support. PETSc provides resource sharing from collaborative grants and collaboration oppor-
tunities that extend beyond the development group. In some cases, PETSc affiliation may be more
important than departmental affiliation, especially since modern academic departments are often
atomized, with little internal collaboration. The community provides a strong academic connection
for industrial and laboratory members, tangible outputs recognized by future employers, and active
participation in the wider computational science and engineering community.

Autonomy PETSc has no official organizational hierarchy, in that there is no appointed leader or
elected offices. Decisions are made collectively by affirmation, although not always with unanimity.
Membership is determined by a willingness to contribute to the codebase, including documentation,
examples, and tutorials. The individual developers largely set development priorities. There is
deference to members who have made deeper contributions to a particular component when making
decisions about its development, but this kind of conservatorship changes over time, depending on
interests, available time, and new ideas. Tabulated voting, elections, and enforcement of a schedule
may make a product more predictable for users, and stricter controls on the introduction of new
features or large changes may make for a simpler and more maintainable codebase. However, these
practices also tend to stifle creativity, impede evolution, and discourage reworking inconvenient
historical interfaces. PETSc errs on the side of empowering the developer, while still maintaining
a development guide [1] and rules of development. It replaces the certainty of a strict development
plan with the certainty of user support. This, along with the wide variety of contributors, allows

2



for a level of agility that might not otherwise occur. It does, however limit the ability to organize
a large centralized response to change when it may be needed.

Roles of PETSc PETSc has a broad overlapping community because it serves many roles.

Research 
platform

Career
development

tool

Compendium 
of algorithms

Pedagogical 
tool

HPC 
libraryAlgorithmic 

management 
system

Funding agencies

Un
ive

rs
iti

es

Figure 1: The multiple interconnected roles of PETSc
driven by the scientific ecosystem.

The roles include but are not limited
to (see Figure 1): A research plat-
form targeting cutting-edge algorith-
mic development. An HPC library.
A repository of template applications
via the wealth of examples that ac-
company the library. A compendium
of algorithms. A pedagogical tool for
training numerical analysts on HPC
platforms [5]. A promoter of best-
choice numerical methods in its role
as an interface between academic al-
gorithmic development and user ne-
cessities. This role is essential to both
application codes in need of adapting
and accelerating their solvers, as well
as academic method developers seek-
ing feedback and a promotion platform. Finally PETSc provides an algorithm management system
to provide state-of-the-art partitioning, preconditioning, and other capabilities via a flexible PETSc
configuration code.

Roles of members of the PETSc community Virtually all active PETSc community members
are PETSc users, while a smaller subset of these, who almost always began as PETSc users, are also
PETSc developers. PETSc users who do not work on its development contribute to PETSc with
suggestions, bug reports, bug fixes, new features, and improved documentation. In no small part
due to the emphasis on autonomy, engagement, and collaboration, it is possible and indeed common
for individuals to move between different roles in the PETSc community. There is a “long tail”
of members who contribute with lower frequency than the most active developers, yet collectively
contribute a great deal. There are well over 100 contributors to the PETSc Git repository, with no
single institution providing the majority of the contributors. The community structure is crucial
in providing a pathway to increased involvement for interested users.
PETSc users can be categorized in a variety of ways, e.g. along institutional lines.

• Academic users: These are students, faculty members, research and development staff in
universities and government agencies. Students might use PETSc to do their homework or
develop a serious code for their paper or thesis. Student users have incentives to contribute
their code back to PETSc to make their paper or thesis more credible. As they graduate, they
likely bring PETSc to fields in industry or academia. Some have become PETSc developers.

• Industrial users: These use PETSc in their company’s research or commercial product.
PETSc’s 2-clause BSD license eases its commercial uses. They may request support that is
unlikely to be funded by government agencies, for example, support on Microsoft Windows.
But fortunately, there are PETSc community members with the expertise to help with these
types of requests. These users also require discretion and confidentiality in what they provide
to members of the PETSc community who are helping them. In addition, they cannot always
share their use cases, so the PETSc community needs to provide general solutions without
understanding the specifics of what is needed. Developing the trust needed for industrial users

3



is a slow, gradual process that recognizes its importance from both sides.
Another way to categorize PETSc community members is by the focus and goals of their work.

• Algorithm developers are generally members of academia, they focus on the development
and analysis of algorithms, and as such may be less concerned about generality and usability.
They use PETSc because it allows them to use the large library infrastructure to prevent
unnecessary coding. They face the challenge of writing scalable implementations in C, which,
even in PETSc, can be time-consuming with a steep learning curve.

• Application developers focus on producing a code addressing one type of simulation well
at a low cost. These are often discipline scientists or engineers for whom simulations are an
important component of their job.

• Scientific toolkit developers develop numerical simulation toolkits that target a high-level
solution of the class of problems they are interested in by leveraging PETSc capabilities and
introducing additional infrastructure. These include Firedrake, MOOSE, Deal.II, and so on.

Users Developers

Industrial

Academic

Algorithm

Toolkit

Application

Figure 2: PETSc is a scientific junction; the
boundary between types of users and develop-
ers is fluid; roles shift and change.

The PETSc community develops, maintains,
and supports the PETSc library. User support is a
crucial benchmark of a healthy community. Mem-
bers of the community usually get back to user re-
quests in hours, if not minutes. This engagement
helps new users to feel welcomed and valued, make
rapid progress, and hence gain confidence that us-
ing PETSc is the right choice. Through users’ feed-
back, experienced PETSc community members get
to know what works and doesn’t and where to im-
prove the software. From feature requests and dis-
cussions, PETSc community members often dis-
cover new research topics for funding.

However, providing good user support is a substantial effort, consuming a large amount of
PETSc developers’ time, particularly when users encounter difficult bugs or performance issues at
scale. User-developer communication on a particular topic could last for weeks or even months.
PETSc developers need to be patient and consistently engaged with users. One may question
whether this practice is sustainable, but so far, it works reasonably well.

Community to community The PETSc software calls many other third-party libraries, in-
cluding MPI, MUMPS, SuperLU, Hypre, etc., and is used in many higher-level toolkits mentioned
above, each of which has its own community. PETSc developers and users can also be developers
or users of other packages; some of these people serve as liaisons that connect the communities.
These individuals speak the languages of both communities and understand PETSc capabilities and
the needs of their communities. They can appropriately explore, explain, and introduce PETSc
features into their communities. This helps expand the reach of PETSc community. They also
reduce the PETSc maintenance burden by addressing many PETSc questions in their communities
while contributing PETSc patches, providing feature requirements, and even serving as final testers
of PETSc releases. This connection helps both communities. For example, we explained PETSc’s
MPI communication requirement to MPICH developers and, they, in turn, use PETSc tests to
drive their optimization. Another example is the liaison from the MOOSE team who understands
the requirements of varied modeling and simulation in the language of nuclear energy and concisely
translates the requirements to the PETSc language. Though the requirements of the MOOSE com-
munity drive these additions, they turn out to be useful for the wider PETSc community. These
interactions increase the strengths of both communities.

4



Acknowledgments

This material was partially based upon work funded by the U.S. Department of Energy, Office of
Science, under contract DE-AC02-06CH11357. This work was supported by the Exascale Com-
puting Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of
Science and the National Nuclear Security Administration, and by the U.S. Department of En-
ergy, Office of Science, Office of Advanced Scientific Computing Research under Award Number
DE-SC0016140. Matt Knepley and Jed Brown were partially supported by U.S. DOE Contract
DE-AC02-0000011838.

5



Bibliography

[1] PETSc developers guide, 2010. https://petsc.org/release/developers/.

[2] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander Serebrenik. On
the abandonment and survival of open source projects: An empirical investigation. In 2019
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 1–12. IEEE, 2019.

[3] Wolfgang Bangerth and Timo Heister. What makes computational open source software libraries
successful? Computational Science & Discovery, 6(1):015010, 2013.

[4] C. Titus Brown. Sustaining open source: thinking about communities of effort, 2019.
http://ivory.idyll.org/blog/2019-communities-of-effort.html.

[5] Ed Bueler. PETSc for partial differential equations: Numerical solutions in C and Python,
2020.

[6] Nadia Eghbal. Roads and Bridges: The unseen labor behind our digital infrastruc-
ture. https://www.fordfoundation.org/work/learning/research-reports/roads-and-bridges-the-
unseen-labor-behind-our-digital-infrastructure/.

[7] P.A. Freeman, W.R. Adrion, and W. Aspray. Computing and the National Science Founda-
tion, 1950-2016: Building a Foundation for Modern Computing. ACM Books. Association for
Computing Machinery and Morgan & Claypool Publishers, 2019.

[8] Matthew J Turk. How to scale a code in the human dimension. arXiv preprint arXiv:1301.7064,
2013.

6



The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a US Department of Energy Of-
fice of Science laboratory, is operated under Contract No.
DE-AC02-06CH11357. The US Government retains for it-
self, and others acting on its behalf, a paid-up nonexclu-
sive, irrevocable worldwide license in said article to repro-
duce, prepare derivative works, distribute copies to the pub-
lic, and perform publicly and display publicly, by or on be-
half of the Government. The Department of Energy will
provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan.
http://energy.gov/downloads/doe-public-accessplan

7

http://energy.gov/downloads/doe-public-accessplan

