
1

Dynamics of Scientific Software Teams
Addi Malviya Thakur∗, Gregory R. Watson$
∗malviyaa@ornl.gov, $watsongr@ornl.gov

∗Software Engineering Group, $Application Engineering Group
Computer Science and Mathematics Division

Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Abstract—Scientific Software Teams (SST) are the primary
enablers of the transformative science taking place all over the
world today. They lead the core development of libraries and
packages that enable today’s supercomputers to process the vast
amounts of data generated by the world’s largest and most
complex scientific instruments for research and development.
This work throws some light on SSTs types and composition,
ensuing culture dynamics, common practices, and the evolving
skillsets needed to perform next-generation science inventions
and discoveries. In addition, the work discusses potential oppor-
tunities and threats surrounding SSTs with a focus on long-term
sustainable research and development. Finally, this work also
discusses best practises, common pitfalls, and practical use cases
towards building and managing SSTs.

Index Terms—Scientific Software Teams, Research Software
Engineering, Software Excellence

I. INTRODUCTION

In many scientific domains, the software now underpins the
scientific results that are produced. As scientific experiments
involving large experimental devices becomes more automated
and sophisticated, the software has become the enabler for re-
search, invention, and discoveries. Software is now an essential
component in every aspect of scientific research workflows -
from data collection, processing, and generation of insights
from experimental instruments, to running complex simula-
tion and modeling applications on supercomputers related to
climate and nuclear reactor modeling. Software that enables
science in this way can be deemed Scientific Software; it
allows rapid discoveries, reduces errors and blunders, and
ensures reproducibility of complex experiments. The design
and development of Scientific Software requires collaborative
efforts with diverse skills in software engineering and a deep
understanding of the scientific domain. In recent years, the
development of Scientific Software has evolved from an indi-
vidual researcher’s effort into a team model. These Scientific
Software Teams (SSTs) work side-by-side and often include
domain scientists from various disciplines that are integral to
the success of the teams’ goals and ultimately the scientific
results.

In this paper, we discuss various types of software teams
from the engagement perspective and their role in designing
and developing scientific software and libraries. Software
teams continuously evolve and adjust to the changing dy-
namics of technology and science. Thus a critical aspect
of such a team is the agility and flexibility in addressing
and incorporating such changes in their workflow. The paper

addresses some of these dynamics through the cultural lens
and narrates the core principles it is governed by. SSTs are
no longer just about creating scientific software; they are also
involved in operationalizing them to support production-grade
benchmarks such as several thousand users, Service Level
Agreements of 99% or more, and mitigating security threats.
The SST members also strive to gain substantial domain
expertise besides developing a robust software ecosystem.

SSTs inherit several traditional and well-known software de-
velopment workflows towards developing scientific software.
For example, SSTs generally follow agile methodologies that
include Scrum, Extreme Programming, Kanban, and others
developed in industry, however, these approaches are usually
tuned to address the specific needs of scientific software
development.

SSTs’ interaction with the domain experts lays the founda-
tion for the successful creation of scientific software. Also, the
growth of scientific software depends upon how effective in-
teraction and coordination exists among all the team resources
regularly.

II. RELATED WORK

Schmitz et al. discussed a hands-on approach to the overall
team dynamics for the PCRaster environmental modeling
platform development in [1]. The authors described a success-
ful team consisting of software engineers and environmental
scientists working side by side on developing the simulation
application. Besides adding new features, the teams were also
responsible for maintaining the legacy code. The team grew
under the umbrella of the academic environment. While devel-
oping the software, the team members were also responsible
for writing scientific publications and research proposals and
teaching on a need-to-do basis. Several works were recently
published that take the “teams of teams” approach to scale pro-
ductivity and innovation when working on an inter-laboratory
program (e.g., exascale) to teach the efficiency and innovation
from small teams to aggregate teams of teams[2], [3], [4]. A
thorough best practices for scientific computing are discussed
in [5].

III. TYPES OF SCIENTIFIC SOFTWARE TEAMS

There are many possible ways to categorize SSTs, but
anecdotally there appear to be two primary types. The first
type of team focuses on developing an ecosystem of tools,
machines, or data processing pipelines. Such teams’ efforts

2

and deliverables are not dictated by a single customer or
stakeholder. Instead, their work focuses on applications that
cut across multiple projects or even a whole facility. Such
teams focus on developing software with a broader user base
and their usage as libraries or packages. For example, the
design and development of an open-source framework for
high performance computing (HPC) network APIs and beyond
can be used in many applications and programs to build
high-performing and highly scalable network stacks for next-
generation applications and systems[6]. In the second type,
a software ecosystem is developed that is geared towards
solving a specific research problem, and the developers work
with the relevant domain experts very closely. For example,
Easterbrook et al. and their team developed scientific software
that focuses on a detailed case study of climate change-
related software development practices[7]. Thus, beyond HPC,
a variety of software solves complex scientific problems and
usher in an era of discoveries. Such dynamics also make
scientific software development different from commercial
software development. Scientific software often requires the
involvement of a domain expert who is actively involved in
the development process.

These two teams can be roughly categorized as the for-
mer developing software for more general use cases, while
the latter develops software for domain-specific use cases.
However, there are some characteristics that apply across
both types, such as the type of software development life
cycle (SDLC) employed. These SDLCs are often adapted
for the type of invention and transformative process that
scientific discovery entails, particularly since understanding
and defining the problem tends to happen incrementally as
the work progresses. For example, in some cases requirement
specifications are impossible to collect at the beginning of
the work. The requirements emerge as the software is being
developed, and the science improves side-by-side. This can
mean that approaches such as test-driven development can be
difficult to implement end-to-end.

Like any development project, there are often risks other
than the knowledge and expertise required to develop the soft-
ware, such as budget, funding source, and changing priorities.
Also, the availability of equipment, data collection, etc., plays
a bigger role in the continuation and timely completion of the
software development.

Both teams begin the software development process by
envisioning solving a specific scientific problem. Issues such
as the scaling of applications to support thousands of users,
for example, is typically not considered until much later in the
process.

The software is itself developed in an iterative fashion and
experimental style, since it is often not clear at the outset what
will work and what will not. As development progresses, both
the domain science and the software may be adjusted in order
to achieve intended goal of the research.

Both approaches suffer from the availability of interfaces
to do the programming. For example, at times, the scientific
application built to run on the HPC hardware is restricted
in using C/C++ or FORTRAN programming languages, and
thus miss out on the advantages or the availability of high-

level programming constructs offered by Java/Python for rapid
prototyping and development.

IV. INTERACTION AND DYNAMICS

Interaction and group dynamics seem to play a more signifi-
cant role in the efficient development of the scientific software
ecosystem. This is because there is often a greater emphasis
among the SSTs to interact and discuss the development
process as discoveries are made through experimentation and
analysis. In reality, scientific discoveries are rarely planned
and are usually the result of chance events, so the development
process to create software that underpins the science must also
be adaptable to unforeseen events.

Understanding changes and accommodating them is a more
significant requirement for software engineers involved in
developing the software for scientific research. The Team
of Teams model[8] has been shown to work well for large
projects that involve coordination and communication within
and across organizations. Inspired by the social network con-
cepts, Teams of Teams allow for agility, rapidly adapting
to changing dynamics, and information sharing at improved
speeds. Like social networks, increasingly frequent and com-
plex communication among the developers evolve to become
small managed teams who communicate and share informa-
tion faster, while still keeping the significant decision-makers
informed about progress. Such approaches allow for greater
transparency among the stakeholders as well as accountability
in achieving shared goals. However, considerable attention
needs to be given to scaling the efficiency and innovation
delivered by small teams to the aggregate Team of Teams.
For example, funding that is shared across multiple teams must
translate to effort and participation that benefits the Team of
Teams as a whole. Building trust among the individuals and
across the teams is essential in order to encourage the free flow
of ideas and transparent communication. Other factors, such
as the ratio of senior staff (who require little supervision) to
junior staff (who require supervision and/or mentoring) must
also be considered in order to find the right balance between
productivity and managing expectations.

Psychological diversity could accompany technical diversity
SSTs culture. Agile practices are starting to be seen as
beneficial by the SST community, and are being more widely
adopted by SSTs. Recently, several national laboratories have
implemented Sprint-style project executions for their Labora-
tory Directed Research and Development (LDRD) programs to
achieve faster results and provide better metrics for assessing
the investment made to achieve high profile discoveries. In
contrast, the commercial software industry has long known
the benefits of using these approaches, and are continually
evolving better ways of developing software. As discussed
earlier, the nature of scientific software development is rarely
predictable, which calls for greater flexibility and higher levels
of uncertainty. The agile approach inherently addresses such
challenges automatically through iterative improvement and
incrementally increasing the level of complexity. The planning
that involves a clear discussion of high-level goals for research
isolates the implementation and variability succinctly through

3

the agile process, allowing for more remarkable changes and
updates along the way as far as the central core research goals
are aligned.

Ethics in research is a shared responsibility. While de-
veloping scientific software, it is vital to pay attention to
ethical responsibility as well. This extends to ensuring that
the software that is developed is inclusive, and does not
incorporate biases or other forms of discrimination. SSTs
also need to consider the implications of their work and the
broader societal impact. It is also important that the SSTs
operate ethically and responsibly. This may be as simple
as ensuring proper attribution for contributors and ensuring
that publication decisions have been adequately discussed and
verified before releasing any software.

V. COMPOSITION AND SKILLS

SST members vary in their background, knowledge, skills,
and abilities. This diversity can be beneficial when it comes to
developing software applications for a wide variety of science
domains. In the commercial industry, software engineers spend
most of their time working on only one project at a particular
time. In contrast, in the scientific software community where
funding is primarily driven through grants and awards, devel-
opers are often working across multiple projects. The fluidity
of working on multiple projects, as well for short periods of
time, is exhibited across various levels. As a consequence,
SST members have only a short time available to ramp up
skills and deliver results. This sometimes also puts constraints
on the application and implementation of software processes,
while still allowing for rapid prototyping and testing of novel
scientific ideas, where the focus is on discovery and creation of
new knowledge. Scientific software development is also often
done for unique problems that have very specific applications,
in which case ground-up development has to be done by the
members of the team, and external libraries of packages are
not always an option. A multi-disciplinary team can be critical
to solving the problems in these situations.

The team composition of SSTs should include members
with a diverse skill-set as well as experience. The ratio of
senior, mid-level, and junior staff needs to be carefully con-
sidered in order to optimize development productivity. Senior
staff with decades of experience working across multiple do-
mains are needed to be able to drive the science component of
the project, comprehend the requirements, and translate them
in a format that can be implemented programmatically. As in
most software development projects, the senior staff tends to
spend more time on the design and planning aspect than the
coding and details of the implementation. Mid-level staff who
have a good grasp on the architecture of the software play
a pivotal role in developing workflows, high-level constructs,
technical design. They are involved in creating libraries and
critical components of the software that serve as the foundation
of the entire ecosystem. Junior staff, including early career,
typically require more supervision and mentoring and are
devoted to learning and writing code for the software systems.
In addition, they learn concepts and workflows from the more
senior members of the team and eventually take on more
complex and challenging tasks as their skills improve.

VI. CONCLUSION

In this work, we addressed several aspects of Scientific
Software Teams (SST) and their interplay among the projects,
stakeholders, and themselves. Creating effective SSTs is a
complex task that requires the active participation of all
team members. The nature of the projects, funding, and
resource availability play a pivotal role in how SSTs operate,
deliver, and perform. Beyond that, core principles such as
agile methods, Team of Teams, transparency are the values
that bring uniformity and coherency, and dependability to
the whole process. SSTs are uniquely positioned to enable
transformative research and are critical drivers of inventive
science. Thus addressing some of the challenges will not only
help nurture this community, but will positively impact every
other scientific discipline that uses SSTs in its research and
development portfolio.

VII. ACKNOWLEDGEMENT

This manuscript has been authored by UT-Battelle, LLC
under Contract No. DEAC05-00OR22725 with the U.S. De-
partment of Energy. The United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a
nonexclusive, paid-up, irrevocable, world-wide license to pub-
lish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these
results of federally sponsored research in accordance with
the DOE Public Access Plan (http://energy.gov/downloads/
doe-public-access-plan).

REFERENCES

[1] O. Schmitz, K. de Jong, and D. Karssenberg, “Sustainable scientific
software: experiences of the pcraster research and development team.”
in Geophysical Research Abstracts, vol. 21, 2019.

[2] E. M. Raybourn, J. D. Moulton, and A. Hungerford, “Scaling productivity
and innovation on the path to exascale with a “team of teams” approach,”
in HCI in Business, Government and Organizations. Information Systems
and Analytics, F. F.-H. Nah and K. Siau, Eds. Cham: Springer
International Publishing, 2019, pp. 408–421.

[3] D. Moulton, E. M. Raybourn, L. McInnes, and M. A. Heroux, “Enhancing
productivity and innovation in ecp with a team of teams approach.” Sandia
National Lab.(SNL-NM), Albuquerque, NM (United States), Tech. Rep.,
2018.

[4] B. H. Sims, “Enabling coordinated, distributed development of scientific
software: A research agenda for adapting a team of teams approach,” Los
Alamos National Lab.(LANL), Los Alamos, NM (United States), Tech.
Rep., 2019.

[5] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis,
R. T. Guy, S. H. D. Haddock, K. D. Huff, I. M. Mitchell, M. D.
Plumbley, B. Waugh, E. P. White, and P. Wilson, “Best practices for
scientific computing,” PLOS Biology, vol. 12, no. 1, pp. 1–7, 01 2014.
[Online]. Available: https://doi.org/10.1371/journal.pbio.1001745

[6] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez,
Y. Itigin, M. Dubman, G. Shainer, R. L. Graham, L. Liss et al., “Ucx: an
open source framework for hpc network apis and beyond,” in 2015 IEEE
23rd Annual Symposium on High-Performance Interconnects. IEEE,
2015, pp. 40–43.

[7] S. M. Easterbrook and T. C. Johns, “Engineering the software for
understanding climate change,” Compu ting in science & engineering,
vol. 11, no. 6, pp. 65–74, 2009.

[8] S. A. McChrystal, D. Silverman, T. Collins, and C. Fussell, Team of
teams: New rules of engagement for a complex world. Portfolio Penguin,
2015.

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1371/journal.pbio.1001745

	Introduction
	Related Work
	Types of Scientific Software Teams
	Interaction and Dynamics
	Composition and Skills
	Conclusion
	Acknowledgement
	References

