
A Framework for Understanding
Research Software Sustainability

Neil P. Chue Hong
Software Sustainability Institute & EPCC

University of Edinburgh
Edinburgh, United Kingdom

https://orcid.org/0000-0002-8876-7606

Matthew Bluteau
Culham Centre for Fusion Energy

UK Atomic Energy Authority
Culham, United Kingdom

https://orcid.org/0000-0001-9498-8475

Anna-Lena Lamprecht
Department of Information and Computing Sciences

Utrecht University
Utrecht, The Netherlands

https://orcid.org/0000-0003-1953-5606

Zedong Peng
Department of Electrical Engineering and Computer Science

University of Cincinnati
Cincinnati, United States of America
https://orcid.org/0000-0002-5071-1586

Abstract—Software sustainability relies on many different
aspects: code quality and design, maintenance, governance,
infrastructure, community engagement, and of course funding.
Understanding what the requirements are for sustaining research
software is often hampered because one size doesn’t fit all.
This position paper proposes a framework for categorising the
different types of research software, suggests how this framework
can be used to identify good practice for each aspect, and
proposes areas for future research.

Index Terms—software sustainability, research software, ma-
turity model, testing

I. WHY A FRAMEWORK IS USEFUL

When evaluating potential practices to support software
sustainability, it can be difficult to identify what approaches
work best. Should you use continuous integration for simple
scripts? What level of documentation is appropriate for the
notebook used to analyse your data? When should you hire a
community manager?

This is principally because each choice you make must be
balanced against the effort to implement, and the number of
times you will benefit from doing it. A framework allows
software owners to evaluate the practices they should be
considering based on an assessment of “where” their software
is at present. It also makes it easier to interpret the types
of guidance available, much in the same way that frame-
works used in education and training help learners understand
whether a course is at an appropriate level for them.

Many existing frameworks have been proposed for software.
From the first cost model for software reuse developed at
CMU’s Software Engineering Institute [8], there have been
several models proposed for software reuse including the
Reuse Maturity Model [9], the reuse model for DARPAs
STARS program [6], the CMMI [3], and the Software Sustain-
ability Maturity Model [7], and - potentially the most widely
used - Technology Readiness Levels. However most of these

frameworks assess the software from the perspective of the
user, not the developer/owner. Typically, they define levels
based on the availability and readiness for use by someone
else.

More recently, other approaches have looked at defining
levels based on maturity and how widely software has been
shared or published. These include application classes for
software produced by the German Aerospace Center [11] and
the schematic stages of open community for research software
proposed at an URSSI workshop [1]. Chue Hong [2] also
looked at comparisons with levels of startups, as defined by
the Startup Genome Project (colloquially known as Marmer
stages) [10], and other research has looked at the role of types
of project teams [4].

II. DEFINING A FRAMEWORK

Building on the work of the various frameworks, we define
a set of Research Software Levels (Table I) which are char-
acterised using a number of dimensions that are important for
assessing the “level” of a piece of research software. Users
refers to the scope of those using the software. Distribution
refers to how widely the software itself is shared, both in terms
of the numbers of people who can use it and the closeness of
their relationship to the developer. Reuse refers to how often
the software is expected to be reused after that point. Support
refers to the expectation of what happens when the software
does not work as expected.

As examples of the different levels, we might have:
• Level 0 - Personal: a short convenience script used once

to process a dataset, a notebook used to explore an initial
concept

• Level 1 - Research: software written to generate results
in a paper

• Level 2 - Supported: a software model used by collabo-
rators at different institutions



TABLE I
RESEARCH SOFTWARE LEVELS

Level Expected users Expected distribution Expected reuse Expected support

0 - Personal Developer only Private to developer (typically
unlicensed)

Only while required None

1 - Research Internal to team Often only published to accom-
pany an associated publication

As long as research is being
conducted / reproduced

Limited to fixing issues prevent-
ing research

2 - Supported Others in community,
mostly collaborators

Often published on a website
or in a public code repository.
License.

As long as research is being
conducted / reproduced

Best effort unless funded

3 - Product Wide range of users Releases formally and widely
distributed with clear license.

Until release is withdrawn or
superceded

Defined levels of support,
roadmap

4 - Critical Used in critical applica-
tions

Releases formally and widely
distributed with clear license.

Until any legal requirement is
discharged

Frequent level of maintenance

• Level 3 - Product: a widely used software library, a
commercial application

• Level 4 - Critical: a widely used key package, a mission
critical piece of software associated with a large experi-
ment

These are similar to the application classes defined in [11],
but we further segment their application class 1 into Levels 1
and 2 to distinguish between software primarily used in a small
team who are all contributing and software where some users
are collaborators but not contributors. We also define expected
dimensions to help categorise software into the different levels.

III. APPLYING THE FRAMEWORK

With the definition of these different levels, we can use
this to understand which practices, approaches, tools or in-
frastructure are best suited to a particular level. For instance,
in Figure 1, we can identify infrastructure for collaboration
and communication, using a similar approach to that in the
book Producing Open Source Software [5]. Level 4 - Critical
is omitted in this figure, but might include Customer Support
infrastructure.

We can also look at approaches to quality assurance, en-
compassing both software and scientific testing.

Here we note that we the general approach for research
software is perhaps different from the IT industry (e.g. as
described in Figure 1 of [12]), where unit tests are likely to
be implemented before system tests. We hypothesise that this
is because it is easier for researchers to implement end-to-end
regression tests (i.e. system tests) than unit tests. For example,
they get a number that they are confident is right from their
code, and they implement that as a test for the ”gold” result, or
they automate a system test that uses a known set of input and
output files. This table could be extended to identify different
static analysis approaches that can be useful applied at each
level, including linting and formal verification.

Similarly, we could use this approach to understand the ap-
propriate requirements and approaches to funding, community

engagement and governance / leadership that improve software
sustainability.

An important thing to note is that software can move
between levels, e.g. because it is seen as useful by a wider
set of users, and all software doesn’t start at Level 0. It is
important to identify the approaches that allow a software
project to meet the more stringent requirements if it moves
up a level.

IV. FURTHER RESEARCH

There are a number of avenues of research that can be
undertaken to improve on this framework:

• Similar approaches to the Startup Genome Report [10]
and in Cohoon and Howison’s work [4] could be used to
examine a large cohort of research software projects to
give confidence that the levels are sensible and distinct.

• Surveys can be run, based on this framework, to identify
the common practices in use at each level in different
communities.

• Comparison against approaches taken in industry to use
similar frameworks to identify best practice at different
stages of maturity

V. CONCLUSIONS

We present a framework for categorising research software
into different levels based on four key dimensions and utilise
this framework to suggest how to identify the appropriate
infrastructure and testing approaches required for each level.
Further research is required to better understand whether the
examples we provide represent the current status of research
software infrastructure and testing, but we believe that the
framework provides a structured way to represent the different
requirements for software sustainability for different software.



Fig. 1. Collaboration and communication infrastructure appropriate at different research software levels.

TABLE II
RESEARCH SOFTWARE LEVELS

Level Validation requirements Testing requirements Testing approaches

0 - Personal Reassure researcher that data
isn’t incorrect

Test that plausible results appear to be gener-
ated, i.e intuition

Manual/interactive checking against test data

Level 0 → 1 Turn manual tests into software tests

1 - Research Reasonable reproducibility of
published result

Tests cover core aspects of the science Small number of system tests / unit tests

Level 1 → 2 Automate testing

2 - Supported Algorithms and models are ac-
curately implemented

Checking against data formats, testing perfor-
mance

Use of test frameworks

Level 2 → 3 Apply regression testing on key functionality

3 - Product Performs as expected in range
of conditions

Stress testing, testing usability and robustness,
including detection of concurrency and memory
errors

Property based testing. Acceptance testing. Per-
formance analysis. Fault localization

Level 3 → 4 Independent assessment

4 - Critical Legal or reputational protection Full coverage and traceability Testing compliance to standards. Security anal-
ysis



ACKNOWLEDGEMENTS

NCH is supported by EPSRC, BBSRC, ESRC, NERC,
AHRC, STFC and MRC grant EP/S021779/1 for the UK
Software Sustainability Institute.

The original ideas for Table I and Figure 1 were developed
by NCH. Table II is adapted from an idea by A-LL, MB, NCH
and ZP developed at SE4Science’21. Tracy Teal provided
feedback on some of the ideas in this document.

REFERENCES

[1] Benthall, S.P. (2019). Software Incubator Workshop: A Synthesis. Ac-
cessed on 16th June 2021 from: http://urssi.us/blog/2019/02/25/software-
incubator-workshop-a-synthesis/

[2] Chue Hong, N. P. (2015). Why developing research software is
like a startup (and why this matters). International Symposium
on Grids and Clouds 2015 (ISGC2015). Available from:
https://www.slideshare.net/npch/why-developing-research-software-
is-like-a-startup-and-why-this-matters

[3] CMMI Product Team, 2006. CMMI for Development, Version 1.2. SEI
Identifier: CMU/SEI-2006-TR-008.

[4] Cohoon, J. and Howison, J. (2018). Routes to Sustainable
Software: Transitioning to Peer Production. Proceedings of the
2018 Annual Meeting of the Academy of Management. DOI:
https://doi.org/10.5465/AMBPP.2018.12182abstract

[5] Fogel, K. (2020). Producing Open Source Software (2nd Edition).
O’Reilly. Available from https://producingoss.com/

[6] Frazier, T.P., and Bailey, J.W. 1996. The Costs and Bene-
fits of Domain-Oriented Software Reuse: Evidence from the
STARS Demonstration Projects. Accessed on 16th June 2021 from:
https://apps.dtic.mil/sti/citations/ADA312063

[7] Gardler, R. 2013. Software Sustainability Maturity Model. Accessed on
16th June 2021 from: http://osswatch.ac.uk/resources/ssmm

[8] Holibaugh, R et al. 1989. Reuse: where to begin and why. Proceedings of
the conference on Tri-Ada ’89: Ada technology in context: application,
development, and deployment. p266-277. DOI: 10.1145/74261.74280.

[9] Koltun, P. and Hudson, A., (1991). A reuse maturity model. 4th Annual
Workshop on Software Reuse, Hemdon, Virginia: Center for Innovative
Technology

[10] Marmer, M., Herrmann, B.L., Dogrultan, E., Berman, R. (2011). Startup
Genome Report: A new framework for understanding why startups
succeed. Version 1.0. Startup Compass.

[11] Schlauch, T., Meinel, T., Haupt, C. (2018). DLR Software
Engineering Guidelines, Version 1.0.0, Zenodo. DOI:
https://doi.org/10.5281/zenodo.1344612

[12] Zamansky, A., Spichkova, M., Rodriguez-Navas, G., Herrmann, P.,
and Blech, J. O. (2018). Towards Classification of Lightweight
Formal Methods. Proceedings of the 13th International Confer-
ence on Evaluation of Novel Approaches to Software Engineering.
https://doi.org/10.5220/0006770803050313


