

A Light-weight Model for Small Scientific
Software Teams

Michael A. Heroux
St. John’s University, Collegeville, MN

Introduction
This paper focuses on a simple, lightweight model with tools and practices to help small
scientific software teams1 introduce structure and process to their management efforts. We
emphasize a handful of tools and practices we have found to be broadly useful. This model has
been used and evolved as part of the author’s student research efforts at St. John’s University.

Team Composition
A common characteristic of scientific software teams is the presence of both junior and senior
members. Senior members are typically university faculty or permanent research lab staff.

1 The model, tools and practices described here can be useful for large teams, too. Often large teams are
composed of small teams, so these practices can be applied at the small team level and applied similarly to cross-
team leadership as a group. Furthermore, team policy becomes even more important on large teams, as do
lightweight communication strategies such as project Kanban boards where the status of activities can be
referenced asynchronously via online tools.

Figure 1: Membership lifecycle of a typical junior team member. Junior members are typically students or post-docs who are
joining, contributing and then departing a team after a few years

Junior members can also be faculty or staff on the way to becoming senior members but are
typically students or post-doctoral members who are expected to both contribute to the team
but also prepare for a future permanent position, often at a different institution. Figure 1
depicts the basic membership lifecycle of a junior team member.

While there are many ways to characterize a research software team, and teams are more
diverse than having just junior and senior members as described here, it is useful to
characterize members as follows:

Senior staff, faculty:
• Stable presence, in charge of research questions, experiments.
• Know the scientific domain conceptual models well.
• May spend less time writing code, may be fuzzy on coding details.

Junior staff, students:
• Transient, dual focus (research results, next position).
• Staged experience: New, experienced, departing.
• Learning conceptual models as part of their ramp up.
• Write most code, know code details.

Team Collaboration Platform
An important component of our small team approach is using a GitHub organization2. Our
organization is called Collegeville, reflecting the geographical location of St. John’s University.
Given this organization, which enables coordination of shared repositories, including private
repositories that are useful for managing team activities and keeping unpublished content
under access control, we have a complete platform for collaboration.

Team Management Elements
While there are many approaches, tools, methodologies and processes to manage a team, we
have found checklists and policies (summarized in Figure 2) to be the most effective and
minimal management elements:

Checklists: Checklists enable a uniform, repeatable, trackable and ever-improving system for
managing key events in a team member’s participation on a project. The following lists (with
links to examples) are particularly useful for our efforts:
• Initiation: Bringing on a new team member occurs often enough to keep a comprehensive

reference checklist of potential activities. From the reference list, a custom list can be
created as a GitHub issue and assigned to the new team member.

• Transition: Often during a project a team member (in particular a junior member) will need
to learn some new material in order to prepare for their next phase of work. A transition

2 GitHub is one of several platforms that can be used to support the processes and practices described in this
paper. Gitlab, Atlassian and even Google Docs can be used effectively, depending on what tools are readily
available and already in use by your organization.

checklist provides them with the needed concrete steps. Progress on the checklist is marked
by checking off each item as it is completed, showing progress status.

• General Exit, Research Student Exit: A smooth departure of a team member requires
planning and sustainability investment throughout project execution. An exit checklist
should be established as soon as possible.

Policies: The value of team policies cannot be overstated. The act of creating and periodically
reviewing policies is a team-building experience, prompting conversation about what team
members value most in each other and their work. The policies establish behavior expectations
and better assure that the research and software products being developed will be high quality
and sustainable, reducing the cost of work and the cost of losing team members who depart.
This sample policy illustrates one concrete example of how a team conducts its work.

Team Activity Management
A simple issue tracking system such as GitHub issues provides teams with a transparent way to
manage work. While any repository in your team’s organization will typically have its own issue
database, we also recommend having an issues-only repository. This repository can be used for
managing team member tasks that are not specific to a particular project. This repository is also
where checklists are managed.

Team Member Phase
New Team Member Steady Contributor Departing Member
Initiation Checklist Team Policies Exit Checklist

Built from a comprehensive
reference checklist and then
customized for the
individual. This checklist
provides the initial set of
concrete activities a person
can work on as part of on-
ramping. Typical items
include setting up accounts,
learning about team tools
and processes, and learning
any basic background
content.

Statements of expected
behavior and practices.
Common items include
reference to institutional
conduct policies,
expectations for how to
capture work artifacts, how
to resolve conflicts and how
to modify team policies in
the future. A key purpose of
team policies is to assure
that team member
contributions are
sustainable.

Built from a comprehensive
reference checklist and
customized for the
individual. Months prior to
a member departure, this
checklist assures that all
research artifacts are
preserved and available to
others, that others are
briefed on current project
status. This list can also
contain the steps required
to schedule and conduct a
thesis defense.

Figure 2: Initiation and exit checklists, along with team policies, can accelerate on-ramping and better assure the sustainability
of junior team member contributions.

A key tool for lightweight task management is a Kanban board, which can be used as both a
dashboard and a tool for coordinating meeting agendas:

• Kanban Board: A Kanban board is used to manage tasks by placing them in columns
indicating their status. On GitHub, the Project board feature can be used to create a
Kanban board. Of particular importance is the ‘In Progress’ column, which lists the
presently active tasks. The discipline of Kanban is that any person or team should have
only so much work going on at once, in order to optimize progress and spur innovations
that increase the rate of task completion. A sample Kanban board shows the five
columns our team typically uses: Backlog, Ready, In Progress, In Review and Done.

• Regular meetings, updates: Team meetings and project status can be facilitated by
regular use and updating of the team Kanban board. Discussion starts with items in the
‘In Progress’ column, then the ‘Ready’ column if a slot opens in ‘In Progress’. Other
columns should be scanned as well. For projects that rely on external contributions, it
can be useful to have a ‘Blocked’ column. Tasks that were in progress but blocked by an
external dependence can be moved to ‘Blocked’.

Summary
For the past five years, the author has conducted small-team scientific software research using
a simple junior-senior member model, along with the use of checklists, team policies, and a
team Kanban board. This lightweight approach as described in this paper enables coordination
and collaboration with modest overhead. We have observed rapid on-ramping, steady progress
with ongoing work and the ability to capture the value of junior member work for the future.

The positive impacts of this approach include clear communication of what needs to get done
and when, and a sense of clarity and steady progress, especially for new students as they ramp
up. Finally, we have seen repeatedly that our approach greatly improves the sustainability of
work as one junior member departs and a new member joins to carry on the work of the
former. Even with a substantial gap between the departure and arrival, we have experienced
tremendous value in improved sustainability from our approach.

We recommend our model, tools and practices for consideration by any team that is just
getting started with explicit formal approaches. A companion website to this white paper can
be found at https://betterscientificsoftware.github.io/A-Team-Tools/.

