
1

Perspectives on Operationalizing Scientific Software
Ryan Adamson∗, Addi Malviya Thakur$

∗National Center for Computational Sciences, $Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Abstract—Software best practices have evolved to speed up fea-
ture development, to minimize the introduction of software flaws,
and to reduce security risk associated with software changes.
Given a well-understood deployment platform target, common
DevSecOps workflows lead to productivity gains. Unfortunately,
there is a gap between the development of scientific research
software and the deployment of that software in an operational
scope. We explore the fundamental differences between the
deployment of research and enterprise software and provide
a framework for minimizing the rework necessary to deploy
software when a research software prototype proves viable. We
propose a balanced approach to the development of scientific
software; the best outcomes are achieved when scientific and
operations teams collaborate in a deliberate manner.

Index Terms—Scientific Software, Operational Software, Toil,
DevSecOps

I. INTRODUCTION

In this paper, we define research software to be novel
algorithms or the implementation of research ideas within a
software context. Research software engineering [1] is per-
formed for science’s sake, typically to support the hypothesis
of a related research question in order to provide value to
a sponsor. These research scopes of work generally have a
science question, perhaps an accompanying publication, and a
period of performance in which funding can be spent. Funds
typically expire at the end of the period of performance, and
under-spending or lack of progress can necessitate a catch-up
flurry of activity at the end that can be hard to accommodate.

In contrast, operational software deployed in production
environments is rarely developed for the software’s sake alone.
Operations teams deploy this type of software to provide ca-
pabilities that an operations team is responsible for delivering,
often times to the satisfaction of an Service Level Agree-
ment (SLA) with the software customer. As such, operational
software is a living entity and is subject to replacement with
another tool at any point in time that does a “better job” at
addressing the operational needs and responsibilities of the
operations team.

Regarding differences between research and operational
software, we make the following observations:

1) Research software is by definition unproven. Failure of
research prototypes to prove a hypothesis are common
and even expected. Valid operational software tools tend
to emerge from a litany of research software prototypes.

2) Operational software is by definition production ready.
Best practices for Site Reliability Engineers [2] call for
reducing toil and other non-valuable work by building

software best practices into the code base and deploy-
ment methodologies.

3) Because of the uncertainty of research prototypes, work
performed early in a research project regarding require-
ments gathering may be wasted if the prototype fails,
thus this work is a form of toil.

4) Operational software is a living system. Underlying
libraries, hardware, provisioning tools, and operational
requirements change over time, and software mainte-
nance is an ongoing necessity.

5) All operational software began as a research idea. A
research software prototype successfully validate that
idea at some point and future software was either written
or hardened to operational standards successfully.

Given these observations, we will explore the gap between
these types of software through the lens of the DevSecOps
methodology.

II. CHARACTERIZING SCIENTIFIC SOFTWARE EFFORT

With the paradigm shift to an integrated DevSecOps team
structure [3][4], scientific software developers in mature orga-
nizations are now able to work much closer to the operations
and security teams. Site Reliability Engineers (SREs) embody
the concept of integrated security and operations capabilities.
SREs are a relatively new concept and are employed to
maintain the deployment platforms that software developers
use for deployment of their software services. Many SRE
best practices are freely available [2]; among the central
tenets of the SRE mantra are the concepts of continuous
automation of daily tasks and infrastructure as code. “Useful
Work” such as software engineering, systems engineering, and
even some amount of overhead tasks are healthy, but tasks
that are manual, repetitive, tactical, or that have no enduring
value can be thought of as wasteful “toil”.[5] The mantra that
emanates from software engineering best practices is actually
quite similar. Solid software design principles, developing
incremental feature enhancements, enforcing strong testing
frameworks, better documentation strategies, continuous de-
ployment methodologies, and complexity reduction [6] [7]
serve to identify and remove potential wasted work and
enhance developer productivity. Why then is research software
that follows these design principles often so hard to deploy in
a production environment as an operational capability?

A. The Deck is Stacked

It turns out that even when research software engineers
follow best practices, scientific software can still have issues

2

at deployment time. Operational, security, budgetary, and
strategic policies of the deployment platform and managing
organization must be adhered to. Unfortunately, those policies
are often not considered by research software engineers or are
worst-case unknowable during the development of research
software.

Let’s consider the plight of a research software development
team that is testing a novel capability and wants to eventually
deploy the tool in an operational context:

1) Even if operational policies are known at the outset,
the constraints may change in the time between design,
successful demonstration, and deployment.

2) Funding profiles, compressed timelines, or other sponsor
constraints may prevent the research team from spending
much effort on the operationalization problem, kicking
the can down the road in the hopes of obtaining more
funding at a later date.

3) If there is not a clear targeted infrastructure for the
eventual deployment of the application, the research
team cannot even bring in an operations SRE to help
advise them on the early design decision tradeoffs.

4) In certain secure areas, specific security policies may
not even be shareable between SRE and software devel-
opment teams when need-to-know cannot be established
before prototype viability is demonstrated.

To the sponsor’s surprise, of course, more work – and in
the worst cases, a complete rewrite – needs to be performed
to meet the eventual production goal once prototype validity
has been demonstrated.

B. A Mathematical Definition of Effort

If we consider the path that a research idea takes from
prototype software to demonstration to operationally deployed
software, we can model it as a mathematical function. Let’s
assume that a new piece of scientific software x will be
viable, and also assume that there is perfect information
about the operational deployment requirements for the specific
deployment targets, we can define the total work required to
deploy an initial operational version of research software x on
n target platforms with:

Work(x) = P (x) +

n∑
i=1

Gi(x) +Ri(x)

where P is the development effort required to design, build,
and test the research prototype, Gi is the work required to
gather and integrate operational requirements throughout the
development of the project and Ri is the rework required to
retrofit the research prototype to operational requirements to
the n arbitrary deployment platforms. Note that the real values
of P , Gi, and Ri are very dependent on the similarity of
operational and security requirements placed on each deploy-
ment platform and to the initial design of the prototype itself.
Platforms that provide the same container deployment tools,
reside within the same organization, and have the same set of
users and security policies will have significant requirement
overlap.

Of course, these assumptions regarding the viability of
prototypes and a perfect understanding of the deployment
requirements do not hold in practice. Thus, in order to
minimize Work(x), a balance must be struck between the
amount of requirement gathering effort that is spent, the
total number of platforms targeted, and the expected cost
of reworking a prototype for a platform. The fundamental
tradeoff for a research software team is clear: Given the
expected probability of prototype success and the expected
complexity of deployment requirements, should the upfront
cost of integrating SRE into the design of the prototype be
spent in order to minimize the deployment rework, keeping
in mind that the failure of prototype demonstration results in
wasted work regarding requirements gathering and building
those into the prototype.

III. SCALING SCIENTIFIC APPLICATIONS

Critical challenges associated with the operational deploy-
ment of scientific applications include ensuring robustness,
responsiveness, stability, resiliency, and security. Scientific
development teams, security engineers, and operations SREs
must address these challenges using a DevSecOps integration
strategy. This is typically done through a Product Readiness
Review (PRR) [8] to assess operational maturity. While con-
siderations such as monitoring, logging, internal and external
documentation, architectural diagrams, and branding are im-
portant, the most significant considerations that could cause
impact to other users, programs, and capabilities sharing the
platform are discussed below.

A. Network Latency and Bandwidth Scaling

An operational scientific application should be responsive to
end-user queries and interactions and should respond to such
requests in a reasonable timeframe. Deployments should be
able designed to scale with the expected number of users and
in such a way as to not adversely impact the shared network
infrastructure.

B. Scientific Application Stress Testing and Load Balancing

The scientific application’s stability and reliability should
be evaluated using a set of test benchmarks to validate ap-
plication readiness. Some examples include memory leakage,
garbage collection, handling of run-time errors, graceful termi-
nation, load and performance testing, and availability, among
others[9]. This conformance allows both developers and SREs
to catalog the upper and lower bounds of the applications’
performance under weak, normal, and heavy workloads.

C. Database Performance and Schema Considerations

Choosing an appropriate database organization strategy is
important as it is often very difficult to retrofit poor design
decisions without a disruptive and comprehensive extract,
transform, load operation. Database normalization is important
for this purpose, and enhances data retrieval, reduces errors,
provides redundancy, and supports CRUD consistency[10]. A
normalized database has a more future-proof logical structure

3

and it compliments the application architecture as well[11].
Recently, NoSQL databases (e.g. MongoDB) have became
popular choices for data-intensive scientific applications.

D. Application Modularization
Software application modularity significantly increases

maintainability as well as rapid development[12]. A modular
application is less complex, is highly re-usable, increases
collaboration, and has a far lower probability to contain bugs in
the modules that have already been operationally hardened. If
possible, a scientific application should be modular from the
beginning unless significant effort is required. In case, such
consideration to convert a monolithic application to be more
modular should be made during the operationalization of any
scientific application.

E. Improving Application Usability
Scientific applications’ usability is one of the essential

criteria for broad adoption. Good usability provides a better
user experience and increases user productivity. An improved
human-computer interaction indicates greater intuitiveness and
understandability of the application which thereby increases its
adoption.

F. Cybersecurity Compliance
Cybersecurity is a key consideration when operationalizing

scientific applications. Use of secure protocols and authenti-
cation methods improves network protection and provides de-
fense to the applications from common attacks. Secure systems
are more resilient to unauthorized data access, identity theft,
ransomware attacks, perform proper logging, and appropriately
enforce user separation and user/system boundaries.

G. Documentation and Training
Finally, to better attract and retain a user base, scientific

applications must provide proper documentation, guidebooks,
and relevant training material. Proactive documentation and
support prevents user tickets and minimizes operational toil.

IV. REDUCING SCIENTIFIC TOIL

In order to reduce the average amount of scientific toil
a research team might experience, we present the following
considerations. While these can be adopted solely by research
software engineers, it is much more advantageous for a
combined DevSecOps team to help navigate the journey from
research idea inception, through prototyping, and ultimately to
operational deployment.

A. Assess the deployment landscape
Perhaps the most important consideration is the early assess-

ment of the potential target deployment landscape. If it is clear
that the research software can be modularized and deployed
using containerization technology, that provides a lot of flex-
ibility. Many sites, however, do not support containerization
or common cloud infrastructures. If certain assumptions are
not valid at the deployment site, consider what features of the
software will need to be reworked.

B. Empathize with other teams

Strong DevSecOps teams have well-balanced and well-
defined roles and responsibilities, nurture a blame-free culture,
and empathize with one another. Distribution of responsibili-
ties may vary widely between different organizations, but the
strongest teams tend to have both the capability as well as
the authority to manage and improve their services. Unhappy
developer, operations, or security teams take longer to reach
shared consensus and often fall into one of two camps:

1) Teams with capability but not authority are not able to
choose their own destiny, and suffer from the technical
choices (often made at higher levels) that do not line up
with their strengths.

2) Teams with authority but not capability typically lack
training, staff, or budgetary resources to fully take
advantage of the technical choices they do make.

Due to the tight integration of DevSecOps teams, team
members migrate much closer to the center of the respon-
sibility, availability, and capability Venn diagram as shown in
Figure-1. Developers making decisions about their software
are able to lean on both security and operations experts, giving
back some authority to the security and SRE teams. Likewise,
changes to security compliance constraints are much more
likely to be discussed and engineered ahead of time, letting
SRE and development teams have a voice in the conversation.

Fig. 1. Convergence of Responsibility, Authority, and Capability

C. Plan for some amount of rework

Some amount of rework will probably be necessary after any
successful prototype demonstration, so planning some amount
of cost and schedule contingency should be done up front. In
the best case, no rework is necessary, and that contingency
can be used to either further research or add support for
the application to run on other non-targeted environments.
The amount of planning and requirements gathering at the
beginning of a project is inversely proportional to the cost
of retrofitting the research prototype. Front-loaded effort, of
course, must be balanced against the viability of the research
itself, or there is risk of scientific toil.

4

Fig. 2. Software Deployment and Maintenance Lifecycle

D. Employ best practices from other domains
One can argue that DevOps methodologies emerged from

operations teams adopting developer tools as infrastructure-
as-code became a design pattern. Similarly, DevSecOps teams
should employ best practices from each of the development,
security, and operational domains (and beyond!). One such
best practice is coordinating feature development or design
changes as shown in Figure-2. This is a standard model
for following and tracking changes to a software product,
operational service, or security tool so that all stakeholders can
be notified and retain some authority for their responsibility
areas that might be affected.

E. Manage the sponsor
Finally, the sponsor of a research effort is ultimately a

deciding factor in the calculus of effort, and thus scientific
toil. Sponsors with inflexible timelines and meager budget con-
straints should be managed in order to explain the retrofitting
necessary should they want a viable-but-lean prototype de-
ployed operationally. On the other hand, if a sponsor is clear
about an eventual operational goal, front-loading effort before
prototype viability is demonstration comes with risks that
should also be discussed.

V. CONCLUSION

There is a gap in research software best practices when
it comes to the operationalizing of prototype software. Es-
sentially, any work towards that prior to demonstration of
the prototype risks being wasted, but rework may be nec-
essary after demonstration if the original design principles
were based on faulty assumptions about eventual deployment.
The software development research team should weigh the
probabilities of prototype success with the cost of rework
on the targeted deployment infrastructure in order to make
informed decisions about reducing effort, thereby providing
maximum value to the sponsor. A well-planned approach
that includes anticipating such challenges and discovering
associated patterns at the beginning would greatly advance the
developmental effectiveness of scientific software applications.
It is worthy to discuss potential concerns and their mitigation
with the sponsors at the beginning and potentially include the
operations team from the beginning to accelerate the transition
from a research application to an operational application. An
early participation as well as setting up a CI/CD pipeline
resembling the target environment would enable the detection
of potential gaps as well as improve the overall process.

VI. ACKNOWLEDGMENTS

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.

REFERENCES

[1] C. R. Prause, R. Reiners, and S. Dencheva, “Empirical study of tool
support in highly distributed research projects,” Proceedings - 5th
International Conference on Global Software Engineering, ICGSE 2010,
pp. 23–32, 2010.

[2] Google, “Google - Site Reliability Engineering.” [Online]. Available:
https://sre.google/sre-book/table-of-contents/

[3] A. A. U. Rahman and L. Williams, “Software security in devops: Syn-
thesizing practitioners’ perceptions and practices,” in 2016 IEEE/ACM
International Workshop on Continuous Software Evolution and Delivery
(CSED), 2016, pp. 70–76.

[4] V. Mohan and L. B. Othmane, “Secdevops: Is it a marketing buzzword?
- mapping research on security in devops,” in 2016 11th International
Conference on Availability, Reliability and Security (ARES), 2016, pp.
542–547.

[5] Google, “Google - Site Reliability Engineering.” [Online]. Available:
https://sre.google/sre-book/eliminating-toil/

[6] B. Moseley and P. Marks, “Tar Pit fossils,” Boreas, vol. 15, no. 1, pp.
82–82, 2008.

[7] N. Wirth, “A Plea for Lean Software,” 1995.
[8] Google, “Google - Site Reliability Engineering.” [Online]. Available:

https://sre.google/sre-book/evolving-sre-engagement-model/
[9] W. B. Nelson, Accelerated testing: statistical models, test plans, and

data analysis. John Wiley & Sons, 2009, vol. 344.
[10] S. Friedrich and N. Ritter, CRUD Benchmarks. Cham: Springer

International Publishing, 2019, pp. 529–533. [Online]. Available:
https://doi.org/10.1007/978-3-319-77525-8 116

[11] C. Beeri, P. A. Bernstein, and N. Goodman, “A sophisticate’s intro-
duction to database normalization theory,” in Readings in Artificial
Intelligence and Databases. Elsevier, 1989, pp. 468–479.

[12] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen, “The structure
and value of modularity in software design,” ACM SIGSOFT Software
Engineering Notes, vol. 26, no. 5, pp. 99–108, 2001.

