
Structured and Unstructured Teams for Research Software

Development at the Netherlands eScience Center
Carlos Martinez-Ortiz, Rena Bahkshi, Yifat Dzigan, Nicolas Renaud, Faruk Diblen, Berend Weel,

Maarten van Meersbergen, Niels Drost

The Netherlands eScience Center

The Netherlands eScience Center is the Dutch national center of expertise for research software

engineering [1]. Together with our academic partners, we develop open-source software and apply

these tools to concrete research questions. Our projects cover the entire research landscape ranging

from the complex data mining of historical events [2] to large scale computation for climate science

[3]. These projects can also drastically vary in size with some large-scale projects requiring the

combined effort of multiple research software engineers (RSEs) [4] to small consultancy projects

where RSEs guide external team in their research and development activities [5]. Alongside support

staff and managements, the Center has a pool of about 40 RSEs who work on about 50 projects in

partnership with research groups across the Netherlands and beyond. To cope with the growth of

Center and the complexity of its ambitious mission, teams have started appearing to facilitate and

organize the execution of our projects. This white paper presents the different types of teams that are

currently in place and offers our own conclusions regarding what type of team suits best the different

types of projects and more importantly the people working at the Netherlands eScience Center.

eScience Team Zoology

Having a bottom-up origins, the teams that have emerged at the eScience Center have all defined their

own approaches to distribute the work among the team members, support each other and collectively

advance research through software development. This has allowed the Center to experiment with

different formats of research software teams, ranging from a single RSE assigned to a given project,

to large, structured groups of RSEs working on several projects. Regardless of the format all teams

interact with external stake holders, such as group leaders and PhD students that can also take part

in the software development efforts.

We do not provide here a detailed presentation of every team, and instead present an overview of

the different types of teams that we are experimenting with. We also avoid giving a strict definition

of what constitutes a team and focus instead on the different ways of working that may suit the needs

of different projects and people.

Project Teams consist of 1 or 2 engineers working on a specific project. The sole purpose of the team

is the realization of that project, and the team naturally dissolves itself when the project ends. The

realization of the project is usually not the only focus of the engineers, who split their time between

different projects and therefore different Project Teams. The team members meet when needed to

update each other and plan the development of the project. Sprint and pair programming sessions

happen sporadically, the team members usually preferring working asynchronously on the project to

avoid scheduling issues.

Collectives consist of a group of loosely connected engineers working on a set of similar projects. The

similarity between the projects and the frequent interactions between all team members through

morning stand up, facilitate cooperation through design sessions, pair programming sessions, code

reviews. The execution of a given project is however done by the 1 or 2 engineers working on it with

minimal contributions from the rest of the team. The loose connection between the team members

allows for non-team members to contribute to projects that are executed in the team. Team wide

activities, such as one week sprint or learning days are organized when opportune.

Agile Teams. A multitude of teams have adopted the Agile philosophy to organize their work and

improve team dynamics. These teams vary in sizes ranging between 4 and 8 and prefer having team

members commit most of their time to the work of the team. Each team works on several projects

that generally have some overlap in terms of domain, technology, or both. Daily stand-ups are used

to plan the work and keep the entire team updated about the progress of the projects. While

collaboration is greatly reinforced by the tight team dynamic, not all team members work on the same

project at the same time. Some Agile teams are working in time-constrained sprints of generally two

weeks while others prefer a looser format for example based on the use of a team-wide Kanban board.

SCRUM Teams. Building up from the Agile philosophy, some of our teams have adopted, more or

less strictly, the SCRUM methodology to organize their work. Following this approach, SCRUM teams

work in 2-weeks sprints during which all team members work on a single project. The sprints start

with an extensive planning session and ends with a sprint review and a retrospective. Daily stand ups

are used to continuously update and fine tune the execution of the project. The release of a new

feature or product is usually made at the end of each sprint. Team members have clearly identified

roles, such as product owner, scrum master, etc … providing clarity and allowing to distribute the

responsibilities among the team.

Not all teams fit exactly in the classification presented here, many teams being somewhat in between

two types. It is also possible for any team to change its modus operandi either permanently or

temporarily: for example, several Project Teams teaming up as a SCRUM for the execution of a single

sprint, or the members of an Agile team deciding to work independently of each other on personal

projects for a week.

Overview of the diverse types of teams used at the Netherlands eScience Center ranging from unstructured

project teams to structured SCRUM teams. All types have pros and cons and suit better diverse types of

projects and people.

What Works When for Whom

Our experience has confirmed that there is no one format which works in every situation. Instead,

each format has its own advantages and disadvantages, and different formats are suitable for different

project needs and different personality traits.

Teams & Projects. Due to the different funding instruments we use, our projects vary in scope,

duration, and hourly budget. Small explorative projects seem to fit better in unstructured teams such

as Project Teams or Collectives. This format allows for ample time to clearly identify what the end goal

of the project should be and explore different strategies and approaches. These explorative tasks are

better performed by 1 or 2 engineers as they require a significant burn in period. These unstructured

formats however do not facilitate the development of final products and often focus on prototyping

and/or specific improvement of an existing software.

Large projects fit naturally better in structured teams such as Agile or SCRUM teams. The large

contributions necessary for these projects require the high degree of synchronization that a tight team

dynamic can provide. Team members are continuously aware of each other activities allowing to

quickly alleviate bottlenecks and to ensure that their respective contributions are aligned. Smaller

projects with a high degree of similarity can also benefit from being clustered together within such a

team. When the overlap between these projects is sufficient, team members can easily contribute to

several projects emulating a large project with smaller components. In addition, projects that are more

product oriented fit also very well in structured teams. There, the tight collaboration between team

members improves code design and maintainability. These structured teams generally require more

planning and therefore an additional project management effort.

Teams & People. Another aspect that should not be underestimated, is that different formats fit

better with the personal preferences of different individuals: a format that is inspiring and productive

for some, may be completely unnatural and counterproductive for others. Attention to personal

preferences, continuous reflection on the working format, and flexibility are some of the key

ingredients for structuring a good team.

Unstructured teams such as Project Teams offer a lot of independence to the team members. Each

member can plan their work independently and decide in which direction the project should go. This

offers a lot of freedom to the research engineers that can rapidly develop prototypes and quickly

explore and test different ideas. However, these unstructured teams provide little cohesion between

the team members that may feel isolated in their work. In addition, members of unstructured teams

find little support in their teammates as they are not deeply involved in each other work.

Structured teams provide a very cohesive working environment and give a feeling of belonging to the

team members. This allows team members to truly support each other and to distribute

responsibilities among all the team members. However, the structure of the team limits the freedom

and independence of each team member as they are fully committed to the work of the team. This

can in the end decrease the sense of ownership of the team members.

Making the best of both worlds

All the different team structures briefly presented above have pros and cons and can provide the

perfect working environment or a never-ending hell for different people. Frequent and open

discussions between members as well as with their line manager are crucial to identify personal

preferences and find the best team for everyone. We should therefore not seek to unify the inner

working of every team but let each team find that for itself.

Having these diverse types of teams working alongside has even been a great asset for the eScience

Center. As an example, the Integrated Omics project [6] started as a very research oriented academic

project for the exploration of machine learning techniques for understanding the interactions

between microbes and human cells. A Project Team constituted of a single engineer was set up to

work on the project. During the exploration phase the Project Team experimented with word2vec [7]

a method originating from natural language processing. The success of the prototype prompted a

consolidation effort of the initial code that was carried out by a SCRUM team. This SCRUM team

significantly improved the code design and maintainability of the initial prototype enabling the

adoption of the methods by a large community of bioinformaticians [8, 9]. This success would not

have been possible without the collaboration between structured and unstructured teams within the

same organization.

References

[1] https://www.esciencecenter.nl/
[2] https://www.esciencecenter.nl/projects/evidence/
[3] https://www.esciencecenter.nl/projects/stochastic-multiscale-climate-models/
[4] https://www.esciencecenter.nl/projects/ewatercycle-ii/
[5] https://www.esciencecenter.nl/news/the-magic-of-machine-learning-2021-call-winners-announced-2/
[6] https://www.esciencecenter.nl/projects/integrated-omics-analysis-for-small-molecule-mediated-host-microbiome-
interactions/
[7] https://en.wikipedia.org/wiki/Word2vec
[8] https://github.com/iomega/spec2vec
[9] https://github.com/matchms/matchms

https://www.esciencecenter.nl/
https://www.esciencecenter.nl/projects/evidence/
https://www.esciencecenter.nl/projects/stochastic-multiscale-climate-models/
https://www.esciencecenter.nl/projects/ewatercycle-ii/
https://www.esciencecenter.nl/news/the-magic-of-machine-learning-2021-call-winners-announced-2/
https://www.esciencecenter.nl/projects/integrated-omics-analysis-for-small-molecule-mediated-host-microbiome-interactions/
https://www.esciencecenter.nl/projects/integrated-omics-analysis-for-small-molecule-mediated-host-microbiome-interactions/
https://en.wikipedia.org/wiki/Word2vec
https://github.com/iomega/spec2vec
https://github.com/matchms/matchms

