
Day 2 Discussion: Collegeville 2021
Technical Approaches to Improved Software Teams

July 21, 2021

Overview: The content your discussion group creates in this document will be synthesized in a
blog posting for https://bssw.io

Instructions:
1. Pick one person in your discussion group to create a new copy of this Google Doc
2. Make a copy of this template in a new Google Doc (the person from step 1)
3. Share the edit link to the document in step 2 with others (copy and paste into Zoom chat)
4. Co-edit the document: Can have one lead writer with others modifying, or another

approach
5. Send the document to Mike Heroux at the end of the session by email

(mheroux@csbsju.edu)

Add group member names for anyone who wants attribution in the blog post:
1. Name, affiliation, and GitHub ID (if available), as you would like it listed in the blog post

- James Willenbring - jwillenbring - jmwille@sandia.gov - Sandia National Labs
- Jacob Moxley - jmox0351 - Sandia National Labs - jcmoxle@sandia.gov
- Weslley Pereira - @weslleyspereira - CU Denver - weslley.pereira@ucdenver.edu
- Gerasimos Chourdakis - @MakisH - Technical University of Munich -

chourdak@in.tum.de
- Lois Curfman McInnes - @curfman - Argonne National Laboratory (curfman@anl.gov)
- Vadim Dyadechko - @vdyadechko - ExxonMobil

Discuss as a group the most promising technical approaches you see as opportunities
for scientific software teams. Summarize discussion in outline form.

- CI/CD pipelines
- Automation

- Ex - reviewing things manually that could be automated
- Static analyzers, formatters, linters, good compilers

- Git, github have good automation tools. Surprised at under usage of these
tools.

- Many of these tools produce a flood of information. How can this
be filtered?

- Custom Git workflows
- Custom “smart” comparators for floating point output

- Automate otherwise manual reminders

https://bssw.io
mailto:mheroux@csbsju.edu

- Automating code writing - github co-pilot - start typing code, it starts to fill
in complete blocks of code.

- Automated testing, different HW/OS
- Force tests to pass before merge
- What about TDD?

- Generally more difficult with research software if you don’t
know what to expect from the results beforehand

- Hard to impose TDD on scientists not trained in SE and
CS. May be missing prerequisites.

- Example: helps to have certain design skills
- Instead of a separate effort for creating a regression test

suite, you do 2 things at once.
- Lower the bar and do something.
- Appreciate having tests, but find it difficult to figure out

exactly what to test (oracle).
- How to apply Test Mocking to Scientific Software?
- Large testing suites have drawbacks b/c when they fail

there are so many places for it to go wrong. Hard to track
down if it’s hardware/different modules

- Unit tests have a fair bit of overhead. A lower bar is
regression tests. At least you have something.

- Coverage testing - keep coverage the same or better
- How to avoid re-testing features that are not targeted by a

specific change? Maybe use CI/CD tools
- Team collaborative software - tools to enable collaboration

- blackboards, etc
- Effective communication software
- Identity management (e.g. centralized RocketChat vs distributed Matrix, similarly

for GitLab and other tools: which tools to use to collaborate across universities?)
- Dependency management
- Metrics

- Jira can provide some of the things that Barry mentioned in the panel this morning.
Everyone has to be on the same platform.

- Need smart notification system that adapts to user preference.
- Standardized notification format for email → let GitHub/GitLab/Jira/… send email

notifications in a standard format and allow any compatible client to filter/prioritize
without manual intervention

-

About 20 prior to the end of the session, around 1:40 pm CDT, try to reach consensus on
3 - 5 high-level technical approaches your team identified

- Approach 1: Team collaborative software - Big issues include buy in, too many tools to
keep track of, getting everyone on the same page for problem -> assignment -> workflow
-> solution - Examples: Jira, GitHub, GitLab

- Approach 2: CI/CD pipelines - Which are the easiest to automate?, How to task the
correct people for different bug fixes, or feature requests? Which tools have the best
support? Example tools: GitHub Actions, GitLab CI, Cron, customized tools

- Approach 3: Tools that assist developer in automated quality assurance - linter, static
analyzer, code coverage, shellcheck, clang-tidy

- Approach 4: IDEs for development - don’t get in the way, feel like using them - can have
a personalized choice here, team tools need uniformity. Might be an area that would
benefit from increased awareness of available features.

- Approach 5: Automating common workflows such as release through scripting a series
of git commands. There is a “Git workflows” package. Also automating common team
workflows/standards. For example, tools that ensure compliance with coding standards.

https://github.com/koalaman/shellcheck

