
Day 2 Discussion: Collegeville 2021
Technical Approaches to Improved Software Teams

Overview: The content your discussion group creates in this document will be synthesized in a
blog posting for https://bssw.io

Instructions:
1. Pick one person in your discussion group to create a new copy of this Google Doc
2. Make a copy of this template in a new Google Doc (the person from step 1)
3. Share the edit link to the document in step 2 with others (copy and paste into Zoom chat)
4. Co-edit the document: Can have one lead writer with others modifying, or another

approach
5. Send the document to Mike Heroux at the end of the session by email

(mheroux@csbsju.edu)

Add group member names for anyone who wants attribution in the blog post:
Name, affiliation, and GitHub ID (if available), as you would like it listed in the blog post

1. Jay Lofstead, Sandia, @gflofst
2. Johanna Cohoon, UT Austin, @jlcohoon
3. Robert Jacob, @rljacob, jacob@anl.gov
4. Sarah Knepper, Intel Corporation, @sknepper
5. Keith Beattie, LBNL, @ksbeattie

Discuss as a group the most promising technical approaches you see as opportunities
for scientific software teams.  Summarize discussion in outline form.

- Successful technical approach will reduce the amount of communication needed
- Success would mean things should be more obvious, so you would look at less

documentation/less documentation needed
- GitHub/GitLab/BitBucket - “software project management tools”

- Communication forum (Issues, Discussion, comments)
- The Pull Request mechanism
- Collection of tools
- Central location
- Conversations about code are (visually) near the code.
- Branching is easy
- Has a Wiki, but requires GitHub account to edit (not everyone has)

- Kanban boards
- E.g. in JIRA
- Hopefully linked to github.

- Notion
- Low code/no code software
- Can take notes in it and can turn notes into database (lots of linking allowed)

https://bssw.io
mailto:mheroux@csbsju.edu
mailto:jacob@anl.gov


- Good for logging thoughts
- Confluence, or other Wikis

- Something entire project team has access to.  Not everyone is a developer and
so may not have a github account for their wiki. Low bar to entry.

- Documentation builds over time.
- Open permissions so anyone (with access) can read/edit any page.  Portions are

world-readable for external users.
- For documenting processes, procedures, plans, meetings, results, decisions.

Not code.
- Keeping documentation updated

- Regular review cycle: annual, monthly perhaps
- Indicate when last modified
- Define what kinds of changes need to be documented

- RSE or other dedicated personnel
- Will (hopefully) be there for the long term
- Reduces need for communication between several part time people
- Focus on software quality
- Be the expert on software dev and help educate the team

- Have specific goals in development
- Feedback loop with users
- Avoid unnecessary work by not doing things users don’t need
- Devote time to projects with clear payoff

- Onboarding process
- How to introduce new people to a project
- Scoping down (what parts you need to focus on, at least initially)
- Consider any NDA or licensing issues they need to be told about
- As first task, update any outdated section of the New Hire/Onboard guide

- Offboarding process
- Often don’t get that luxury
- Make sure their knowledge is transferred, tasks re-assigned.

- Software written by non-software experts is passable, not great
- Writing software - cooking analogy
- Big educational component - understanding why/the value of processes
- Documentation from the experts on how to start, standards to follow.

- Emphasize importance of the team
- Best practices might seem like a detriment to individuals’ productivity, but they

benefit the team—show that team value
- Need this to be reflected in evaluations (annual reviews shouldn’t ding you for

being prosocial)
- CI and code checkers

- Give team members confidence to change code.
- Can make it work, but should you? Intersections with quality.
- Tools used

- If can’t pay for support, can’t use it



- Higher-level management (outside of team) decisions may impact
- Slack (or other chat services)

- Incredibly critical for asynchronous updates (team spread over multiple
timezones)

- Virtual team can cohere by hanging out in a channel.
- Good to have an “all questions welcome” channel.
- Can’t always trust status indicators for people.
- Can be difficult to set the culture - big request (1 hour effort) isn’t good to put in

Slack
- Can be helpful to turn off notifications to avoid distractions

- Office hours
- Weekly Zoom room

- Point …
- Sub-point …

About 20 prior to the end of the session, around 1:40 pm CDT, try to reach consensus on
3 - 5 high-level technical approaches your team identified

- Approach 1: Shared communications infrastructure and a shared understanding of how
to use that infrastructure (e.g. perhaps don’t use email AND Slack or email AND Github)

- Approach 2: Browser-based software project management tools (e.g., GitHub), including
training and encouragement from management to use

- Approach 3: Project documentation (processors, procedures, meetings, code docs) that
is clear, findable, modifiable by members of the project.

- Approach 4:  Routine, automated CI and code quality checkers to give team members
confidence in changing code.


