Day 2 Discussion: Collegeville 2021
Technical Approaches to Improved Software Teams

Overview: The content your discussion group creates in this document will be synthesized in a
blog posting for https://bssw.io

Instructions:

1. Pick one person in your discussion group to create a new copy of this Google Doc

2. Make a copy of this template in a new Google Doc (the person from step 1)

3. Share the edit link to the document in step 2 with others (copy and paste into Zoom chat)

4. Co-edit the document: Can have one lead writer with others modifying, or another
approach

5. Send the document to Mike Heroux at the end of the session by email
(mheroux@csbsju.edu)

Add group member names for anyone who wants attribution in the blog post:

Name, affiliation, and GitHub ID (if available), as you would like it listed in the blog post
Jay Lofstead, Sandia, @gflofst

Johanna Cohoon, UT Austin, @jlcohoon

Robert Jacob, @rljacob, jacob@anl.gov

Sarah Knepper, Intel Corporation, @sknepper

Keith Beattie, LBNL, @ksbeattie

aokrwbd-~

Discuss as a group the most promising technical approaches you see as opportunities
for scientific software teams. Summarize discussion in outline form.
- Successful technical approach will reduce the amount of communication needed
- Success would mean things should be more obvious, so you would look at less
documentation/less documentation needed
- GitHub/GitLab/BitBucket - “software project management tools”
- Communication forum (Issues, Discussion, comments)
- The Pull Request mechanism
- Collection of tools
- Central location
- Conversations about code are (visually) near the code.
- Branching is easy
- Has a Wiki, but requires GitHub account to edit (not everyone has)
- Kanban boards
- E.g.inJIRA
- Hopefully linked to github.
- Notion
- Low code/no code software
- Can take notes in it and can turn notes into database (lots of linking allowed)


https://bssw.io
mailto:mheroux@csbsju.edu
mailto:jacob@anl.gov

Good for logging thoughts

Confluence, or other Wikis

Something entire project team has access to. Not everyone is a developer and
so may not have a github account for their wiki. Low bar to entry.

Documentation builds over time.

Open permissions so anyone (with access) can read/edit any page. Portions are
world-readable for external users.

For documenting processes, procedures, plans, meetings, results, decisions.
Not code.

Keeping documentation updated

Regular review cycle: annual, monthly perhaps
Indicate when last modified
Define what kinds of changes need to be documented

RSE or other dedicated personnel

Will (hopefully) be there for the long term

Reduces need for communication between several part time people
Focus on software quality

Be the expert on software dev and help educate the team

Have specific goals in development

Feedback loop with users
Avoid unnecessary work by not doing things users don’t need
Devote time to projects with clear payoff

Onboarding process

How to introduce new people to a project

Scoping down (what parts you need to focus on, at least initially)
Consider any NDA or licensing issues they need to be told about

As first task, update any outdated section of the New Hire/Onboard guide

Offboarding process

Often don’t get that luxury
Make sure their knowledge is transferred, tasks re-assigned.

Software written by non-software experts is passable, not great

Writing software - cooking analogy
Big educational component - understanding why/the value of processes
Documentation from the experts on how to start, standards to follow.

Emphasize importance of the team

Best practices might seem like a detriment to individuals’ productivity, but they
benefit the team—show that team value

Need this to be reflected in evaluations (annual reviews shouldn’t ding you for
being prosocial)

Cl and code checkers

Give team members confidence to change code.

Can make it work, but should you? Intersections with quality.
Tools used

If can’t pay for support, can’t use it



- Higher-level management (outside of team) decisions may impact
Slack (or other chat services)
- Incredibly critical for asynchronous updates (team spread over multiple
timezones)
- Virtual team can cohere by hanging out in a channel.
- Good to have an “all questions welcome” channel.
- Can’t always trust status indicators for people.
- Can be difficult to set the culture - big request (1 hour effort) isn’t good to put in
Slack
- Can be helpful to turn off notifications to avoid distractions
Office hours
- Weekly Zoom room
Point ...
- Sub-point ...

About 20 prior to the end of the session, around 1:40 pm CDT, try to reach consensus on
3 - 5 high-level technical approaches your team identified

Approach 1: Shared communications infrastructure and a shared understanding of how
to use that infrastructure (e.g. perhaps don’t use email AND Slack or email AND Github)
Approach 2: Browser-based software project management tools (e.g., GitHub), including
training and encouragement from management to use

Approach 3: Project documentation (processors, procedures, meetings, code docs) that
is clear, findable, modifiable by members of the project.

Approach 4: Routine, automated Cl and code quality checkers to give team members
confidence in changing code.



