
The Layers of CSE Software Sustainability

James Willenbring
Sandia National Laboratories,
North Dakota State University

2019 Collegeville Workshop on
Sustainable Scientific Software
(CW3S19)

July 23, 2019

SAND2019-8583 C
Sandia National Laboratories is a multimission laboratory

managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S.

Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

2 Exascale Computing Project

Software Sustainability Definitions

• Cost Efficient Maintainability and Evolvability
-- Sehestedt, et al. [1]

• Capacity of the software to endure
-- Software Sustainability Institute proposal [2]

• The software will continue to be available in the
future, on new platforms, meeting new needs

-- Daniel Katz [3]

Sustainability Factors

How …
extensible

interoperable
maintainable

portable
reusable
scalable
usable

3 Exascale Computing Project

Categories of Software Sustainability

• Intrinsic: Pertaining to characteristics of the software
• Extrinsic: Pertaining to the software development environment

-- Rosado de Souza, et al. [4]

• Cost Efficient Maintainability and Evolvability – intrinsic/extrinsic
• Capacity of the software to endure - intrinsic
• The software will continue to be available in the future, on new

platforms, meeting new needs - neutral

4 Exascale Computing Project

Computational Science and Engineering (CSE) Software
Sustainability MILC needs to be:

extensible
interoperable
maintainable

portable
reusable
scalable
usable

My
Ingenious

Library
Code

(MILC)

Your
Awesome

Library
(Y’al)

High-profile
Application
Customer

(HAC)

Someone’s
Less

Ingenious
Code
(SLIC)

A2

A1

L1

L2

A quick and dirty proof of concept

5 Exascale Computing Project

Libraries
• Solvers, etc.
• Interoperable.

Frameworks & tools
• Doc generators.
• Test, build framework.

Extreme-scale Scientific Software Development Kit (xSDK)

SW engineering
• Productivity tools.
• Models, processes.

Domain components
• Reacting flow, etc.
• Reusable.

Documentation content
• Source markup.
• Embedded examples.

Testing content
• Unit tests.
• Test fixtures.

Build content
• Rules.
• Parameters.

Library interfaces
• Parameter lists.
• Interface adapters.
• Function calls.

Shared data objects
• Meshes.
• Matrices, vectors.

Native code & data objects
• Single use code.
• Coordinated component use.
• Application specific.

Extreme-scale Science Applications

Domain component interfaces
• Data mediator interactions.
• Hierarchical organization.
• Multiscale/multiphysics coupling.

Extreme-scale
Scientific
Software
Ecosystem

6 Exascale Computing Project

Motivation and history of xSDK

Next-generation scientific
simulations require combined
use of independent packages
• Installing multiple independent software

packages is tedious and error prone
– Need consistency of compiler (+version,

options), 3rd-party packages, etc.
– Namespace and version conflicts make

simultaneous build/link of packages difficult

• Multilayer interoperability among packages
requires careful design and sustainable
coordination

• Prior to xSDK effort, could not build
required libraries into a single executable
due to many incompatibilities

xSDK history: Work began in ASCR/BER
partnership, IDEAS project (Sept 2014)
Needed for BER multiscale, multiphysics
integrated surface-subsurface hydrology models

Program Managers:
Thomas Ndousse-Fetter (ASCR)

Paul Bayer & David Lesmes (BER)

7 Exascale Computing Project

Complexity of CSE Software Sustainability – the xSDK

sundials

cmake

openmpi

hypre

nanoflann

openblas

python

ncurses

pkgconf

readline

expatlibffibzip2

gdbm sqlite

openssl

zlib

automake

perl

autoconf

amrex

trilinos

matio

metis

parmetishdf5

glmboost

netcdf superlu-dist

xsdk

phist

plasma

dealii

pumi

alquimia

mfem

petsc

strumpack

slepcpflotran

tasmanian

omega-h

hwloc

libxml2

libiconv xz diffutils

libtool

m4

gsl

intel-tbb

libsigsegv

p4est adol-c

muparser

oce

netlib-scalapack suite-sparse arpack-ng

Extensible, interoperable,
maintainable, portable, reusable,

scalable, usable?

Is this even comprehendible?

Forget it. I’ll write my own…

Credit to: Todd Gamblin’s xSDK Diagram, Spack

https://github.com/xsdk-project/xsdk-diagram
https://github.com/spack/spack

https://github.com/xsdk-project/xsdk-diagram
https://github.com/spack/spack

8 Exascale Computing Project

CSE Software Sustainability Break-down

• Three layers
– First layer: Those aspects of sustainability relating directly and specifically to

the code base and project circumstances, such as staffing, funding, tools,
processes, etc.

– Second layer: Sustainability issues related to the (direct and indirect)
dependencies of a software project

– Third layer: Concerned with the interoperability of a well-defined ecosystem
of software

9 Exascale Computing Project

First Layer of Sustainability – My Project

• Is my project (intrinsically and extrinsically) sustainable?
– Project team members/leaders typically have a big impact on (but not

complete control of) the first layer
• Software design
• Software testing
• Funding
• Emphasis placed on documentation
• Coding guidelines
• Process for committing changes
• …

10 Exascale Computing Project

1st Layer Metric Categories

• Complexity
• Coupling
• Cohesion
• Size
• Sarkar metrics [5]
• …
• These are useful, but do not capture the complexity of CSE software

sustainability

11 Exascale Computing Project

Second Layer of Sustainability – Project Dependencies

• Can my project “safely” accept a dependence on other pieces of
software?
– Interface stability
– User support
– Documentation
– Funding stability
– Sustainability of its dependencies
– “-ability” list
– …

12 Exascale Computing Project

Possible 2nd Layer Metrics

• What percentage of the CSE-related software dependencies (direct or indirect) for a given
software library or application are interoperable with one another and
– periodically versioned for interoperability? (e.g., through Spack/E4S)
– regularly tested for continued interoperability? (e.g., through Spack/E4S)

• What percentage of lines of source code of the CSE-related software dependencies (direct or
indirect) for a given software library or application are interoperable with one another and
– periodically versioned for interoperability?
– regularly tested for continued interoperability?

• What percentage of interface calls to dependency libraries support backward compatibility?

• What percentage of days in the past three months have the dependencies of a given software
library or application been interoperable at a development version level?

13 Exascale Computing Project

Third Layer of Sustainability – An Ecosystem of Software

• What set of software products can
be used “safely” & interoperably?
– What packages, features, and

interoperability is necessary and
useful?
• Chicken/egg problem

– Long-term view

• Not all of the software in the
ecosystem needs to survive
indefinitely
– Graceful retirement

Possible metrics
analogous to 2nd

layer metrics

14 Exascale Computing Project

Between the Layers

• Layers feed one another
– More sustainable packages make for a more sustainable ecosystem
– Better testing infrastructure and coverage makes it easier to sustain packages

• Need a vocabulary to discuss intricacies of CSE software
sustainability.
– Can these layers or a modified version of them enable those discussions?

• A package that is perfectly first layer sustainable may not be “safe” to
use without higher levels of sustainability
– Unless it depends on no other CSE software, which devastates productivity
– Higher levels involve a lot of extrinsic factors

• Need ways to quantify sustainability

15 Exascale Computing Project

Sources

• [1] Stephan Sehestedt, Chih-Hong Cheng, and Eric Bouwers. 2014. Towards quantitative metrics for architecture models.
In Proceedings of the WICSA 2014 Companion Volume (WICSA '14 Companion). ACM, New York, NY, USA, , Article 5, 4
pages. DOI: http://dx.doi.org/10.1145/2578128.2578226

• [2] Stephen Crouch, Neil Chue Hong, Simon Hettrick, Mike Jackson, Aleksandra Pawlik, Shoaib Sufi, Les Carr, David De
Roure, Carole Goble, and Mark Parsons. Nov-Dec 2013. "The Software Sustainability Institute: Changing Research
Software Attitudes and Practices,” Computing in Science & Engineering , vol.15, no.6, pp.74,80.
DOI:10.1109/MCSE.2013.133.

• [3] Daniel Katz. 2016. Defining Software Sustainability. Retrieved from
https://danielskatzblog.wordpress.com/2016/09/13/defining-software-sustainability/.

• [4] Mário Rosado de souza, Robert Haines, and Caroline Jay. 2014. Defining Sustainability through Developers' Eyes:
Recommendations from an Interview Study. DOI: https://doi.org/10.6084/m9.figshare.1111925.v1

• [5] Santonu Sarkar Avinash C. Kak Girish Maskeri Rama "Metrics for Measuring the Quality of Modularization of Large-
Scale Object-Oriented Software" IEEE Transactions on Software Engineering vol. 34 no. 5 Sep–Oct 2008. DOI:
10.1109/TSE.2008.43

• "Works As Coded." Abbreviations.com. STANDS4 LLC, 2019. Web. 18 Jul 2019.
<https://www.abbreviations.com/Works%20As%20Coded>.

http://dx.doi.org/10.1145/2578128.2578226
https://doi.org/10.6084/m9.figshare.1111925.v1
https://doi.org/10.1109/TSE.2008.43
https://www.abbreviations.com/Works%20As%20Coded

