
The need for software deployability:
Broadening community tools for

industry use

Benjamin Cowan
Tech-X Corporation

Overview

• Building a broad base of users and developers for community
software is important for sustainability

• What is needed for industry to participate?
• From point of view of commercial HPC software developer

Tech-X History Overview

Tech-X’s mission is to provide customers
with the best computational software and
engineering services to enable their
breakthroughs in research, development,
design, and operations

www.txcorp.com• Founded in 1994
• ~35 people, 2/3 Ph.D.s,
• Located in Boulder, Colorado, USA
• Leader of national projects, partner with

national labs

Simulation Software Products

• Software provides unique physics and computational capability
• Works on multiple platforms, scales from laptops to supercomputers

FDTD electromagnetics
and kinetic plasma PIC code

Shock capturing plasma
fluid dynamics

Polymer physics modeling

VSim Application Areas

• Antennas
• Waveguides
• Microwave devices (e.g. klystrons, traveling-wave tubes)
• Magnetron sputtering
• RF-driven plasmas for semiconductor processing
• Optical fibers
• Silicon photonics
• Ion thrusters
• Plasma-based particle accelerators

Performance portability

• Project underway since 2015 to
bring high performance to VSim
features on advanced
architectures

• CUDA GPUs, thread parallelism
and vector instructions on CPUs

• Puts additional constraints on how
we use community software

0 50 100 150 200 250 300 350
Number of cells (millions)

0

500

1000

1500

2000

2500

Sp
ee

d
(M

ce
lls

/s)

MPI component, 32 cores Xeon E5-2698v3
MPI vector, 32 cores Xeon E5-2698v3
MPI+OpenMP+SIMD, 32 cores Xeon E5-2698v3
GPU, 1ù GTX 1080 Ti
GPU, 2ù GTX 1080 Ti
OpenMP+SIMD, Xeon Phi 7250

Business trajectory

• Originally grew out of DOE SBIR program
• Increasing emphasis on commercialization over the last decade
• 2008: GUI development began; improved every version

Parabolic Dish
Antenna VSim
Example

• 2011: DOE SBIR program
institutes commercialization
requirements

• We target projects that lead
to commercializable IP

• Closed-source model
• Sales steadily increasing;

now support full time staff of
application engineers

Customer profile

Picture of Summit supercomputer at ORNL

Picture of broke
Monopoly guy

Picture of desktop Windows box

Picture of Monopoly guys running with
bags of cash

Deployability: Supporting commercial customers

• We can’t assume that the customer:
• Can build software
• Can install dependencies
• Can manage drivers/system software
• “I don’t have administrator privileges on my computer.” –Magnet engineer at

national lab partner
• So we have to:

• Provide installation in user space via installer or tarball
• Have software perform well on customer machine without access to it
• Support Windows

Constraints of deployability

• Can’t just use container or VM
• Need to build for compatibility with users’ expected software and

drivers
• Testing is critical: Nightly, all platforms and hardware/compiler variants

Participation in community software

• We contribute to community software—if we can use it
• Trilinos: Linear algebra/solvers

• Also SuperLU, HYPRE

• VisIt: Embedded visualization
• HDF5: I/O
• CMake: Build system generator
• Not adopted yet —no Windows support:

• Kokkos: Performance portability. Got building on Windows with MSVC and
LLVM, but atomics aren’t working

• Spack: Package management

Picture of flammable materials
storage cabinet

Windows

• How the Windows build environment
looks, to an HPC developer:

• Different shell environment
• Many packages require

Visual Studio
• Which lags in HPC features

• But catastrophes are
preventable with preparation

Picture of dumpster fire

Fat binaries

• Take advantage of vector instructions

• What vector instructions does our customer’s machine support?

• CUDA supports fat binaries and automatic dispatch for NVIDIA GPU
architectures

• But host compilers are all over the map

• Compile flags? Attributes? Automatic dispatch?

• Maybe just build shared libraries for each architecture; resolve at
install or load time. Infrastructure required?

The “rainbow of doom”
Feature Linux Mac Windows

GCC Intel Apple
Clang

LLVM
Clang GCC Intel VS

2017 Clang Intel MinGW
w64

CUDA a a3 a ? x3 a ?1 x3 x

OpenMP a a x2 a2 a x a a a

Kokkos works a a a a a x4 x4 a a

target clones a a x x x a x x a x

function multi-versioning a a x x x a x x a x

target attribute a ? a a ? x a a a

Builds engine toolchain a a a a a a a a a

Performance B A B B A ? ? A

Cost Free !!! Free !!! ! Free !!!

1. https://llvm.org/docs/CompileCudaWithLLVM.html: CUDA compilation is supported on Linux, on MacOS as of 2016-11-18,
and on Windows as of 2017-01-05, but failing in trunk (https://bugs.llvm.org/show_bug.cgi?id=38811) for Windows.

2. https://openmp.llvm.org/. Apple’s clang does not contain openmp. Download LLVM7 or use llvmall to build.
3. https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html: CUDA 10.0 supports ICC-18, but on Linux only.
4. Kokkos builds, but tests failing. Clang requires LLVM kludge for long pathnames.

https://bugs.llvm.org/show_bug.cgi?id=38811
https://openmp.llvm.org/

Recommendations

• Support Windows
• It’s easier if you start early
• Encapsulate Windows-specific issues

• Can your software be deployed without the user having to build it?
• Thoughts on open source:

• Our code encapsulates our competitive advantage—in both commercial and
research sectors

• Our target users are not software developers
• Avoid GPL—Software that’s “free as in speech” is a nice ideal, but beer costs

money

