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Energy Exascale Earth System Model

• “A collaboration among the DOE national to develop and apply the most complete, leading-
edge climate and Earth system models for the most challenging and demanding climate-
change research problems and DOE mission needs while efficiently using DOE Leadership 
Computing Facilities.”

• 8 U.S. national laboratories and 6 partner institutions
• Total effort:  ~43 FTE
• Funding:  approx $22M/year.  DOE Office of Science, Office of Biological and Environmental 

Research.
• See e3sm.org for more.



E3SM IG 3 major areas of concern
• Develop, maintain and support software that is needed for E3SM but is not part 

of the main prognostic models (the AGCM, OGCM, etc.). Build system, test 
system, coupler, data models, diagnostic/analysis software.

• Manage data sets 

• Define, document, manage the process and 
procedures used in all software development within 
the E3SM Project



CI:  Continuous Integration
• Take all the features that are ready to be added to master each day and test them 

together.
– Do this before actually merging to master.
– If it’s a pass, can “graduate” to master.
– If a fail, fix or revert.
– Have Jenkins or similar service run tests automatically every night

• Necessary for a software base that is modified frequently
– Testing provides confidence that your modifications behave as expected.

• Ideally:  complete code coverage for each iteration of your CI test suite.
– All execution paths through your software.  Use multiple tests to get there.
– All compiler/machine combinations of interest.  Run on a “zoo” of machines.

Non-controversial statement:  Automated regular testing is a necessary (but not 
sufficient) condition for Software Sustainability



CI and E3SM
Does E3SM need CI?  Oh yes.
• Is modified frequently

– Starting August, 2014, E3SM has averaged 1 PR/day, every calendar day.
• Inflated somewhat by per-machine build configs included in source
• Doesn’t count the PRs in from components included as git submodules.

• Has many developers
– 114 contributors on github.

• Has many simultaneous development goals
– Components of E3SM (the atmosphere, ocean, land, etc. models) all have their own 

development goals.   Work on parallel tracks and combine to improve simulations in 3 areas:  
water cycle, biogeochemistry, cryosphere.   Major development proposed and reviewed every 
3 years.



Expected challenges for CI with E3SM.
• E3SM has many possible execution paths

– E3SM is actually several climate-science models in one code base.  A very “heterogeneous 
solver”

• Fully coupled,  OGCM with fixed atmosphere,  AGCM with fixed SST,  active land only, …
– Each configuration has run/compile time switches to further increase the number of paths.

• Diagnostics on/off,  experimental param. schemes on/off,  low/high resolution, etc.

• E3SM is mostly Fortran
– Experience has shown that large Fortran codes can get different behavior from different 

Fortran compilers (Intel, GNU, PGI, etc.) and even different versions of the same compiler.
• Everything from internal compiler errors to runtime errors to climate-changing differences to roundoff.

– Successful testing with one compiler on one machine is misleading.
– Also need to test with full optimization flags on and then again with debugging flags.



Brief look at how E3SM does testing
• Climate models work hard to guarantee bit-for-bit reproducible results under 

many circumstances.   
– Necessary to avoid expensive and not-yet-automated testing for “identical” climates.

• E3SM/CESM share the Case Control System from the Common Infrastructure 
for Modeling the Earth (CIME) which provides these test types and system test 
infrastructure.

• CIME provides about 30 system test types.   Examples:
• “SMS”  smoke test.  Run successfully for some amount of simulated time.
• “ERS”   Exact restart.  bit for bit when starting from checkpoint.

• Do 3 runs:  one long,  2 short with second using a checkpoint from the first.  End at same time.  
Should be bfb.

• “PEM”  bit for bit when changing task count
• Do 2 runs, one with default task layout, one with Ntasks/2. Should be bfb.



An E3SM system test

> ./create_test SMS_Ld2.ne30_oECv3_ICG.A_WCYCL1850S_CMIP6   \
--testmods allactive-v1cmip6

Smoke	Test
Run	for	2	days	instead	
of	default	(5)

Resolution Component	set

Optional	set	of	runtime	settings

Custom	python	program	to	parse,	set	up	and	build	
executable,	run	test.
Machine	is	auto-detected	from	hostname	where	command	is	executed	(can	
be	specified)
Default	compiler	and	flags	are	specified	in	XML	config file	in	source.



E3SM test suites

• Combine	test	types	with	different	compsets and	resolutions	used	by	E3SM	to	form	test	
suites

• e3sm_integration:		run	overnight	on	version	of	the	day	(VOTD).		71	tests.
• e3sm_developer:		subset	of	e3sm_integration,	run	in	an	hour	or	so	by	individual	developer	on	their	
development	cluster	(or	maybe	a	big	workstation)

• e3sm_highres:		Run	high-resolution	configs on	high-node-count	platforms	that	can	accommodate	
them.



Lets be a naïve E3SM developer...

• I’m developing a key DOE Office of Science application.

• I’d like to follow good programming practices and use CI on the DOE Office of 
Science compute platforms my application is targeting.

• Lets set up our test suites to run every night on the platforms DOE has made 
available for its science!



Obstacle 1:   No overnight turnaround
• On busy computers at OLCF, ALCF, NERSC, no way to guarantee your test 

suite will finish in the morning if it is above a certain size.
– Queue wait times depend on other users and there are a lot of users.
– “Premium” queues still aren’t a a guarantee and would make testing more expensive.
– Some queues have a minimum job size to start quickly.

• “Debugging” queues offer fast turnaround BUT aimed at single developer 
doing repeated edit-compile-run-analyze cycles.
– Limit number of simultaneous jobs per-user.
– Limit the total number of nodes.
– Limit the total wallclock time (less then 4 hours)



Obstacle 2:   No automatic test runs
• 2-factor authentication means external Jenkins service can’t connect to start 

testing.  There are a few ways around that.
– Ask nicely for an exception for one specific user coming from specific IP address (NERSC)
– If allowed, use a cron process to start suite (ALCF).

• Even better, a local Jenkins instance.
– If forced to, designate a human to log on and run suite (OLCF)



Obstacle 3:   Not enough core hours available.
• Core-hour proposal process assumes code is ready-to-run.   

– Must carefully map requested core-hours to planned production simulations (that will result 
in papers). 

– “computational readiness” is actually a required section in INCITE proposals.
– Proposals are very competitive.  LCFs let anyone in the world apply.
– You can usually add 10% to your total request for “debugging or mistakes”.

• “discretionary” accounts are easy to get but:
– Available for limited time
– Designed to help you calculate your core-hour request accurately after some 

tuning/measuring of your ready-to-run code.  Not for CI or long-term development.



Coping strategies 1
• Find cycles from locally available machines.

– Sandia had 2 “lightly” used clusters with standard CPU nodes (1200 and 1800 nodes)
• But only Sandia staff can access

– Argonne had a lab-wide cluster large enough.
• And its possible for non-Argonne E3SM staff to use.

– BER spent program dollars on its own hardware (200 and 400-node clusters so far)

• Install similar software stack where possible (Compiler and compiler version)

• Limitations
– Still not testing at scale of 1K-10K nodes/tasks that we will be running on.   Can easily miss 

flagging code that only has problems on high task counts.
– Still not testing on the actual hardware/software stack we’ll use in production. 
– Debugging test fails on the Sandia-only machines is painful if the developer is not a Sandia 

employee.



Coping strategies 2 (because we still don’t have enough time)
• Spend time making configurations that are “ultra low” resolution

– Most straightforward way to reduce resource requirements of tests.

• Spend time figuring out just how many timesteps are needed for a given system 
test to work.

• Instead of all possible configurations, test most-used configurations
• Don’t use all the test types for selected configurations.

• Limitations
– This is a lot of work
– May not touch all code paths when running at low resolution.
– When a new configuration starts to get more use, may not make it in to test suite 

immediately.
– Its easy for end-users to configure the model for a case that has never been tested.



E3SM test suite result
• After absorbing all the limitations imposed on our testing

– Reduce number of test types
– Reduce number of component configurations
– Reduce resolution to “ultra-low” in most cases.
– Reduce total simulation to bare minimum (9 time steps in some cases)
– Run mostly on available lab clusters.
– For LCF, NERSC overnight, reduce to absolute bare minimum (e3sm_production)

We have some confidence that our software is working and can be changed with 
confidence.  Still get surprises.



Desired changes
• At the center level:

– Provide internal Jenkins service or at least allow cron jobs

• At the Office of Science level
– Make testing a welcome consumer of cycles at centers.
– Require explanation of testing process in computer time proposals.
– Allow testing core hours to be significant (1/2) portion of total request.
– Allow testing-only proposals.
– Provide more cycles to fit expanded testing role.



Thank you!

(Disclaimer:  all opinions are my own and not necessarily those of E3SM)


