
1© 2019 The MathWorks, Inc.

Sustainable Software Practices in Developing MATLAB

Pat Quillen

Engineering Manager, MATLAB Math and PDE

Collegeville Workshop on Sustainable Scientific Software, 24 July 2019

2

MathWorks as Producer and Consumer of Scientific Software

▪ MATLAB is a technical computing environment providing scientific software

to our customers and also a platform for development of scientific software

▪ Many MathWorks products also sit on top of third-party scientific software

libraries

– BLAS, LAPACK, FFTW, UMFPACK, HSL_MA57, … and many more

I'll talk today about ways we've addressed sustainability challenges in

developing and in using scientific software

Disclaimer: Following are my opinions and do not necessarily reflect those of MathWorks

3

Sustainability is our Business

▪ MathWorks around since 1984

– MATLAB, even longer---late 1970s

– ~5000 employees, ~55--60% are in Development

▪ Not everything is MATLAB…

– MathWorks makes a lot of products---around 123 in total

– Almost all of them require MATLAB

▪ Many customers have suites of MATLAB code/Simulink models

– We need good software practices to build software serving internal and external

customers alike

4

Company Decisions that have helped Sustainability

▪ Conversion to C

– First MATLAB that shipped was PC-MATLAB implemented in C

▪ The Quality Initiative

– Natural expression of Core Values, particularly Continuous Improvement

▪ Foundational Expression of QI: Fixed Time between releases

– Since 2004, MATLAB (and all products) have been released roughly every six months

– We have a well-defined release cycle

▪ Active Dev is 8 iterations ~ 26 weeks with Freeze milestones

▪ End-game ~ 3 months

https://www.mathworks.com/company/aboutus/mission_values/values.html

5

The Quality Initiative

▪ Phased approach to improving our software

– Focus on defect reduction, tracking, reporting

– Consider sources of bugs in all phases of software lifecycle

– With emphasis on process improvement to eliminate defects and their sources

▪ Targeted metrics

– Bugs/Dev

– Categorized bugs  emphasis on the most severe bugs

– Compiler warning reduction

▪ Began in earnest roughly 20 years in

6

Testing and Integration

▪ Code organized into clusters in a system called BaT (Build and Test)

– Clusters run tests charted to file changes for every submission; rejected if failures

– Build and test code on all platforms (with some processor variants)

– Continuous integration up the chain into main

▪ Testing occurs as part of build and as part of test

– pkgtests and unittests built/executed with C++ modules

– MATLAB Unit tests run during Test phase

– Performance regression tests run 3 times weekly

▪ Company wide bashes are held

– Defect reporting/enhancement requests rewarded!

https://www.mathworks.com/help/matlab/matlab-unit-test-framework.html?s_tid=CRUX_lftnav

7

Implementation strategies

▪ Define or adopt a coding standard and use tooling to enforce it

– Minimally, compile at the highest warning level you can and at least consider lint

– Lots of choices (C++ Core Guidelines, Google, C++ Coding Standards book)

– Also, use standard libraries and stay off the bleeding edge

▪ MATLAB includes a Code Analyzer that automatically runs in the Editor

Light's green,

code's clean

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://google.github.io/styleguide/
http://www.gotw.ca/publications/c++cs.htm

8

Refining Designs

▪ Bugs introduced at design time are the most expensive to eliminate

▪ Codified our software design process

– Templates provided, revisited, and revised to make sure that they are still serving us

– New hires are trained within the first 6—8 weeks

– Local teams empowered to influence the process and templates

– Codified how we do design review

– Every customer visible MATLAB API goes through extensive design review

▪ Effect: Simpler designs with less surface area

– True for both C++ and MATLAB APIs

– Mileage varies across products

9

Managing Complexity and Adding Value with Layers of APIs

▪ Some APIs offered in MATLAB language (as .m)

▪ Which then use builtins from some shared library

▪ Which may depend on another shared library with almost all of the

MathWorks-ish dependencies stripped out

– Can be used by other products in a variety of ways

▪ Which then may depend on some 3rd party library

▪ At every level, expose only what is necessary

▪ Examples

– fft, decomposition, rand

10

Speaking of third party libraries…

11

Questions we ask of Software we use in MATLAB

▪ Doc? Is it comprehensive and understandable?

▪ Test? Does any exist?

▪ Build? make, Cmake, autotools?

▪ Who do we run to with problems? Can we track resolution of our

problems?

▪ Do you run on our supported platforms (Win, Linux, Mac)?

▪ How do you manage

– Memory

– Errors

– Threads

– Globals

– And how much of that can we control and how?

12

Questions we ask of Software we use in MATLAB (continued)

▪ Under what circumstances are you reproducible?

▪ Numerically, what guarantees do you give?

▪ What about nonfinite/subnormal handling?

▪ How about recursion?

▪ What about messages you might want to dump to stdout? Can we

suppress that easily?

▪ What are your dependencies and do we have conflicts?

▪ What about the license? Can we redistribute? Can we modify the code?

13

Before we go, a word about Backwards Compatibility

14

Keep the old code running---Backwards Compatibility

▪ Almost never throw anything away

– Leverage "Discourage Use" process through doc and tooling

– Keep around former code paths as undocumented package functions

▪ Continue to test them, to some extent

– Our big customers standardize on releases and don't move often (maybe every 3—6

years)

▪ Reproducibility

– Guarantee run-to-run reproducibility under very strict circumstances

▪ Same OS

▪ Same MATLAB version

▪ Same number of threads

▪ Same inputs

– Otherwise, it's a bug

15

Wrap Up

▪ Leverage build and test for continuous integration

▪ Track bugs, squash them, and report to your customers

▪ Adhere to standards, but stay away from the bleeding edge

▪ Spend time on design to design out bugs

▪ Observation: This wanted to be a talk about Technical Approaches but

possibly turned out to be more cultural…

Thank you!

