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Sustainability refers to the ability to maintain the 
scientifically useful capability of a software product over its 
intended life span, including understanding and modifying 
a software product’s behavior to reflect new architectural 
advances. 
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Good methodologies to increase sustainability 

  Automatic build system 
  Using CMake/Ctest increases build-test productivity and robustness, 
easier to manage dependencies on third-party software. 
CMake supports builds for both Linux and Microsoft Windows.  

  Open source repository 
Svn à GitHub improved distributed contributions, making the code 
truly open-source. 
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Good methodologies to increase sustainability 

  Automatic build system 
  Using CMake/Ctest increases build-test productivity and robustness, 
and easier to manage dependencies on third-party software 
CMake supports builds for both Linux and Microsoft Windows.  

  Open source repository 
Svn à GitHub improved distributed contributions, making the code 
truly open-source. 

  Correctness testing  
 
  Performance autotuning 
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SuperLU numerical testing: Ax = b 
  Regression test aims to provide coverage testing of all functionalities  of the 

user-callable routines. 
  Testing code structure: 
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Malloc/free balance check 

void *superlu_malloc(size_t size) 
{ 
    char *buf; 
    buf = (char *) malloc (size + 64); 
    buf[0] = size; 
    malloc_total += size; 
    return (void *) (buf + 64); 
} 
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  Debugging mode SUPERLU_MALLOC / SUPERLU_FREE 

void *superlu_free(void *addr) 
{ 
   char *p = ((char *) addr) - 64; 
   int n = ((size_t *) p)[0]; 
   malloc_total  -= n; 
   free (p); 
} 

size 

buf user addr 



“Testing in Scientific Software: Impacts on Research Credibility, Development 
Productivity, Maturation, and Sustainability,” 
Chapter in “Software Engineering for Science”, Jeffrey  Carver, Neil P. Chue Hong, 
George K. Thiruvathukal (editors), October 20, 2016, CRC Press. 
Roscoe A. Bartlett, Anshu Dubey, Xiaoye S. Li, J. David Moulton, James M. 
Willenbring, and Ulrike Meier Yang (2016),  
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Autotuning method in xSDK4ECP project 

  Develop an autotuning capability that learns optimal parameter 
selection and effectively replaces explicit human-based parameter 
selections. 

  Collaborating with Y-Tune project led by Mary Hall, using 
complementary methods. 

  Assumptions: 
  Execution of an ECP application corresponds to an expensive function 
evaluation. 
  Often, each application code solves one type of problems (e.g., certain 
PDE), with “similar” performance characteristics, even though sizes 
may vary. 

  Optimization metrics: runtime, memory, energy, … 
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Leverage statistical & machine learning 

  Bayesian black-box optimization method based on multi-output 
Gaussian process. 

  Specifically, use multitask and transfer learning to exploit the 
correlation among the multiple function evaluations at different 
parameters to build the learning model which can choose the 
parameter setting for the unseen task. 

  Applications input the following to the tuner: 
  Entry function:  F (p1, p2, …) 
  Exposing parameters 

•  Integer: range 
•  Real: range 
•  Categorical 

  Constraints 
Autotuner calls entry function repeatedly with optimization 
algorithms to explore search space. 
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GPtune Python interface 

Example: ScaLAPACK QR factorization 
•  Tasks: dimensions (m, n) 
•  4 parameters: process grid (nproc = P*Q), Block size (mb, nb) 
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Python interface to define user function 
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Example: ScaLAPACK QR factorization 

  Semi-exhaustive search results: 
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1 node Edison, m = n = 2000 
X-axis: MB, Y-axis: NB 
 
Each layer is one (P,Q) configuration 

mbnb

Runtime (s)

128 nodes Edison, m = n = 10,000 
X-axis: MB, Y-axis: NB 
 
Function non-smooth 



Example: ScaLAPACK QR factorization 

  Tasks: dimensions (m = n); parameters (mb, nb, nprocs, p). 
  50 tasks (dimension 1 – 20,000, following Latin Hypercube), 20 samples per 

task, 128 nodes of NERSC Edison 
  Comparison between MLA and OpenTuner, HpBandSter 
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  MLA finds better 
parameters in 42 
cases comp. to 
OpenTuner, in 47 
cases comp. to 
HyBandSter 

  Average 1.5x 
improvement 



On-going work 

  More examples: 
SuperLU sparse direct solver: 7 parameters 

•  For a set of un-related matrices chosen from SuiteSparse, GPtune 
is similar to OpenTuner  

•  For a set of matrices in the same family, GPtune is better 
Hypre AMG preconditioner to GMRES 

•  3D Poisson, const. coeff. Isotropic:  12 parameters 
 
  Consider to incorporate algorithmic and hardware performance 

models in the autotuner. 

  Plan to release GPtune end of FY19. 
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Multitask and transfer learning 

  Example: Co-Kriging exploits correlation of sampled executions in 
parameter space. 
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•  Red / Purple curves 
represent cheap / expensive 
variables.  

•  Only sample 4 points with 
expensive variables 

•  Use the knowledge of 11 
points of cheap samples. 

•  Co-Kriging model (Orange) 
is more accurate than 
Kriging (Green) to predict 
expensive curve 


