
Making Correctness Testing and Performance Autouning
The Integral Parts of Software

X. Sherry Li
xsli@lbl.gov

Lawrence Berkeley National Laboratory

Collegeville Workshop on Sustainable Scientific Software (CW3S19),
July 22-24, 2019

Sustainability refers to the ability to maintain the
scientifically useful capability of a software product over its
intended life span, including understanding and modifying
a software product’s behavior to reflect new architectural
advances.

2

Good methodologies to increase sustainability

  Automatic build system
  Using CMake/Ctest increases build-test productivity and robustness,
easier to manage dependencies on third-party software.
CMake supports builds for both Linux and Microsoft Windows.

  Open source repository
Svn à GitHub improved distributed contributions, making the code
truly open-source.

3

Good methodologies to increase sustainability

  Automatic build system
  Using CMake/Ctest increases build-test productivity and robustness,
and easier to manage dependencies on third-party software
CMake supports builds for both Linux and Microsoft Windows.

  Open source repository
Svn à GitHub improved distributed contributions, making the code
truly open-source.

  Correctness testing

  Performance autotuning

4

SuperLU numerical testing: Ax = b
  Regression test aims to provide coverage testing of all functionalities of the

user-callable routines.
  Testing code structure:

5

B 'err =max i
| ri |

(| A | ⋅ | x |+|b |)i

F 'err =
x − x*

∞

x*
∞

Malloc/free balance check

void *superlu_malloc(size_t size)
{
 char *buf;
 buf = (char *) malloc (size + 64);
 buf[0] = size;
 malloc_total += size;
 return (void *) (buf + 64);
}

6

  Debugging mode SUPERLU_MALLOC / SUPERLU_FREE

void *superlu_free(void *addr)
{
 char *p = ((char *) addr) - 64;
 int n = ((size_t *) p)[0];
 malloc_total -= n;
 free (p);
}

size

buf user addr

“Testing in Scientific Software: Impacts on Research Credibility, Development
Productivity, Maturation, and Sustainability,”
Chapter in “Software Engineering for Science”, Jeffrey Carver, Neil P. Chue Hong,
George K. Thiruvathukal (editors), October 20, 2016, CRC Press.
Roscoe A. Bartlett, Anshu Dubey, Xiaoye S. Li, J. David Moulton, James M.
Willenbring, and Ulrike Meier Yang (2016),

7

Autotuning method in xSDK4ECP project

  Develop an autotuning capability that learns optimal parameter
selection and effectively replaces explicit human-based parameter
selections.

  Collaborating with Y-Tune project led by Mary Hall, using
complementary methods.

  Assumptions:
  Execution of an ECP application corresponds to an expensive function
evaluation.
  Often, each application code solves one type of problems (e.g., certain
PDE), with “similar” performance characteristics, even though sizes
may vary.

  Optimization metrics: runtime, memory, energy, …

 7/24/19

Leverage statistical & machine learning

  Bayesian black-box optimization method based on multi-output
Gaussian process.

  Specifically, use multitask and transfer learning to exploit the
correlation among the multiple function evaluations at different
parameters to build the learning model which can choose the
parameter setting for the unseen task.

  Applications input the following to the tuner:
  Entry function: F (p1, p2, …)
  Exposing parameters

•  Integer: range
•  Real: range
•  Categorical

  Constraints
Autotuner calls entry function repeatedly with optimization
algorithms to explore search space.

7/24/19

GPtune Python interface

Example: ScaLAPACK QR factorization
•  Tasks: dimensions (m, n)
•  4 parameters: process grid (nproc = P*Q), Block size (mb, nb)

7/24/19

Python interface to define user function

7/23/19

Example: ScaLAPACK QR factorization

  Semi-exhaustive search results:

7/23/19

1 node Edison, m = n = 2000
X-axis: MB, Y-axis: NB

Each layer is one (P,Q) configuration

mbnb

Runtime (s)

128 nodes Edison, m = n = 10,000
X-axis: MB, Y-axis: NB

Function non-smooth

Example: ScaLAPACK QR factorization

  Tasks: dimensions (m = n); parameters (mb, nb, nprocs, p).
  50 tasks (dimension 1 – 20,000, following Latin Hypercube), 20 samples per

task, 128 nodes of NERSC Edison
  Comparison between MLA and OpenTuner, HpBandSter

7/23/19

  MLA finds better
parameters in 42
cases comp. to
OpenTuner, in 47
cases comp. to
HyBandSter

  Average 1.5x
improvement

On-going work

  More examples:
SuperLU sparse direct solver: 7 parameters

•  For a set of un-related matrices chosen from SuiteSparse, GPtune
is similar to OpenTuner

•  For a set of matrices in the same family, GPtune is better
Hypre AMG preconditioner to GMRES

•  3D Poisson, const. coeff. Isotropic: 12 parameters

  Consider to incorporate algorithmic and hardware performance

models in the autotuner.

  Plan to release GPtune end of FY19.

7/24/19

15

Multitask and transfer learning

  Example: Co-Kriging exploits correlation of sampled executions in
parameter space.

7/24/19

•  Red / Purple curves
represent cheap / expensive
variables.

•  Only sample 4 points with
expensive variables

•  Use the knowledge of 11
points of cheap samples.

•  Co-Kriging model (Orange)
is more accurate than
Kriging (Green) to predict
expensive curve

