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Test driven development

• Often described as an iterative process to create 
software

Refactor 
code if 

necessary

Write a failing 
test
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satisfy testRun test
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Questions that arise with this approach

• Most descriptions gloss over how you past the first step. 
i.e. how you get from a feature to writing a test

• What should the scope of the test be? 

• How much code should be written on each iteration?

• What code should be refactored, and what that 
actually means?

• Should I be thinking about design issues as I’m doing 
this?

• Etc.
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Why is it hard to use TDD?

• Most(?) developers start with a prototyping approach
• Many organizations view testing as a necessary evil or 

a defensive mechanism

• It’s easier to start doing something than to spend time 
thinking about it

• It’s more interesting to start doing something…

• TDD is a different paradigm so requires some 
education
– It’s easy to get bogged down in minutia e.g. how much code 

should I write, what is refactoring, etc.
– Prototyping is just coding so you can start as soon as you know 

how to code
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Development “spectrum”
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Scientific Method

• An iterative method for creating explanations

Draw 
conclusions

Ask a question 

Form a 
hypothesis 
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hypothesis 
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Why is the Scientific Method so successful?

• “[Science] initiated the present era in human history, 
unique for its sustained, rapid creation of knowledge 
with ever-increasing reach” – David Deutsch, The 
Beginning of Infinity

• Key elements:
– Rejection of authority
– Testable, explanatory theories
– A quest for good explanations†

• Two concrete outcomes:
– Makes experimental results repeatable
– Normalizes the process of performing experiments

† A ”good” explanation is one which is hard to vary without changing the meaning. 
This is in contrast to a “bad” explanation, which is testable, but when refuted does 
not contribute anything towards understanding the phenomenon.
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TDD as a method

• Suppose we consider TDD as a method (i.e. an 
empirical and iterative approach) rather than a 
mechanism (in the sense of an algorithm) 

• This is the same approach that a scientist would take, 
namely 
– Formulate a hypothesis about the system and incrementally 

test those hypothesis against reality
– If the resulting artifacts satisfy the demands placed on the 

system, they become the best model of the theory embodied 
in those demands

– The artifact is never 100% correct, only true until falsified

• Thinking about TDD this way gives us a way of avoiding 
some of the previous pitfalls
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A TDD method

• Think about the problem being solved and how to solve it

• Discuss ideas with someone or otherwise seek the knowledge of others about the 
problem in question.

• Try things out first, especially when starting a new task

• Ensure all existing assertions “fail to falsify” the system before changing anything

• Write some code that asserts something not currently true about the system (i.e. it 
falsifies the assertion)

• Run this code and confirm the new assertion - and only the new assertion -
successfully fails

• Add just enough code to confirm the assertion “fails to falsify” (i.e. passes)

• Confirm that all the other assertions “fail to falsify."

• Change names, extract functions and do other refactorings necessary prior to 
adding another failing assertion

• Keep doing this until the problem has been solved
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Final thoughts

• For sustainable software, extensive testing is essential 
(according to Michael Feathers, all code without tests 
is legacy code)

• But TDD requires great discipline
• We’re scientists, so we’re supposed to be applying 

scientific method in our work (in turns out this isn’t 
always the case)

• TDD may be one way to help us think more
scientifically about our software

• Conversely, as scientists, we should find TDD a more 
natural approach to developing software


