
ORNL is managed by UT-Battelle, LLC 
for the US Department of Energy

A Scientific Approach to Developing 
Scientific Software

Gregory R Watson

CW3S19

July 24, 2019



22 Open slide master to edit

Test driven development

• Often described as an iterative process to create 
software

Refactor 
code if 

necessary

Write a failing 
test

Write code to 
satisfy testRun test

Software

Choose a
story



33 Open slide master to edit

Questions that arise with this approach

• Most descriptions gloss over how you past the first step. 
i.e. how you get from a feature to writing a test

• What should the scope of the test be? 

• How much code should be written on each iteration?

• What code should be refactored, and what that 
actually means?

• Should I be thinking about design issues as I’m doing 
this?

• Etc.



44 Open slide master to edit

Why is it hard to use TDD?

• Most(?) developers start with a prototyping approach
• Many organizations view testing as a necessary evil or 

a defensive mechanism

• It’s easier to start doing something than to spend time 
thinking about it

• It’s more interesting to start doing something…

• TDD is a different paradigm so requires some 
education
– It’s easy to get bogged down in minutia e.g. how much code 

should I write, what is refactoring, etc.
– Prototyping is just coding so you can start as soon as you know 

how to code



55 Open slide master to edit

Development “spectrum”

prototyping-style
development

test driven
developmentme

Write code
Design

Write tests
(if necessary) Write tests

Design

Write code 

Write code

Design

Write tests



66 Open slide master to edit

Scientific Method

• An iterative method for creating explanations

Draw 
conclusions

Ask a question 

Form a 
hypothesis 

Make a 
prediction 

Test the 
hypothesis 

Knowledge

Observation



77 Open slide master to edit

Why is the Scientific Method so successful?

• “[Science] initiated the present era in human history, 
unique for its sustained, rapid creation of knowledge 
with ever-increasing reach” – David Deutsch, The 
Beginning of Infinity

• Key elements:
– Rejection of authority
– Testable, explanatory theories
– A quest for good explanations†

• Two concrete outcomes:
– Makes experimental results repeatable
– Normalizes the process of performing experiments

† A ”good” explanation is one which is hard to vary without changing the meaning. 
This is in contrast to a “bad” explanation, which is testable, but when refuted does 
not contribute anything towards understanding the phenomenon.



88 Open slide master to edit

TDD as a method

• Suppose we consider TDD as a method (i.e. an 
empirical and iterative approach) rather than a 
mechanism (in the sense of an algorithm) 

• This is the same approach that a scientist would take, 
namely 
– Formulate a hypothesis about the system and incrementally 

test those hypothesis against reality
– If the resulting artifacts satisfy the demands placed on the 

system, they become the best model of the theory embodied 
in those demands

– The artifact is never 100% correct, only true until falsified

• Thinking about TDD this way gives us a way of avoiding 
some of the previous pitfalls



99 Open slide master to edit

A TDD method

• Think about the problem being solved and how to solve it

• Discuss ideas with someone or otherwise seek the knowledge of others about the 
problem in question.

• Try things out first, especially when starting a new task

• Ensure all existing assertions “fail to falsify” the system before changing anything

• Write some code that asserts something not currently true about the system (i.e. it 
falsifies the assertion)

• Run this code and confirm the new assertion - and only the new assertion -
successfully fails

• Add just enough code to confirm the assertion “fails to falsify” (i.e. passes)

• Confirm that all the other assertions “fail to falsify."

• Change names, extract functions and do other refactorings necessary prior to 
adding another failing assertion

• Keep doing this until the problem has been solved



1010 Open slide master to edit

Final thoughts

• For sustainable software, extensive testing is essential 
(according to Michael Feathers, all code without tests 
is legacy code)

• But TDD requires great discipline
• We’re scientists, so we’re supposed to be applying 

scientific method in our work (in turns out this isn’t 
always the case)

• TDD may be one way to help us think more
scientifically about our software

• Conversely, as scientists, we should find TDD a more 
natural approach to developing software


