
exascaleproject.org

2019 Collegeville Workshop on Sustainable Scientific Software (CW3S19)
July 22-24, Collegeville, MN

From Research Prototype to Production Software:
The Lessons of the SLATE Project
Jakub Kurzak <kurzak@icl.utk.edu>
Mark Gates
Ali Charara
Jack Dongarra

Innovative Computing Laboratory
University of Tennessee



2

ScaLAPACK

Implementation	Language
o FORTRAN	77

Fork–Join	Execution
o parallelism	in	PBLAS

Hardcoded	Memory	Layout
o 2D	bock-cyclic

Extremely	Memory-Conservative	Yet	Wasteful
o requires	the	user	to	allocate	workspaces
o stores	symmetric	and	triangular	matrices	as	full	matrices



3

Design Challenges

No	unified	model	for	programming	distributed-memory,	multi-GPU	systems
o MPI+OpenMP+CUDA/HIP?
o Managed	Memory?
o NCCL?

No	standardized	solution	for	node-level	memory	coherency
o OpenMP/OpenACC compiler	directives?
o OpenMP/OpenACC runtime	API?
o CUDA/HIP	runtime	API?
o Managed	Memory?

No	standardized	solution	for	programming	GPU	kernels
o OpenCL
o OpenACC?
o CUDA/HIP?



4

Design Challenges

OpenMP	tasking	does	not	mix	well	with	MPI
o MPI_THREAD_MULTIPLE	is	costly
o MPI_TASK_MULTIPLE	is	needed

OpenMP	tasking	does	not	mix	well	with	GPU	APIs
o task	are	asynchronous	by	definition,	kernels	are	not
o stream	management	becomes	a	nuisance

Development	of	batched	BLAS	is	lagging

o We	need	batched	kernels	for	everything
o NVIDIA	has	little,	AMD	has	nothing



5

Standard	Library
o containers

o std::map
o std::list
o std::set
o std::tuple
o std::vector

o numerical	utilities
o std::min()
o std::max()
o std::copysign()
o numeric_limits<T>::min()

o parallel	utilities
o std::atomic<T>

Templates
o precisions

o float
o double
o std::complex<float>
o std::complex<double>

o targets
o Target::Host
o Target::HostTask
o Target::HostNest
o Target::HostBatch
o Target::Devices

Standard	Features
o inheritance
o overloading
o …

C++11 and up

Modern	Features
o rvalue references
o smart	pointers
o …



6

SLATE



7

Standards



8

Waterfall

o design	once
o implement	once
o minimal	maintenance	required



9

Spiral

o design
o implement
o refine	/	add	value
o implement
repeat

Gradually	absorbs	complexity	from	the	higher	level.



10

Agile/XP

o all	technical	risk	goes	here

o underlaying	technologies	in	flux

o mixing	paradigm	– MPI+OpenMP+CUDA/HIPo OO	design	(encapsulation)

o maximum	compactness	(minimum	LOC)

o minimum	functionality	(delayed	generalization)

E.g.,	MOSI	memory	consistency	protocol.



11

Compactness

Templating	precisions
o float

o double

o std::complex<float>

o std::complex<double>

Handling	of	side, uplo, trans

o ScaLAPACK

o 9	cases	of	gemm (36	blocks	of	code	total)

o 8	cases	of	trmm (32	blocks	of	code	total)

o SLATE

o 1	case	of	gemm (1	bock	of	code)

o 2	cases	of	trmm (2	blocks	of	code)

o storing	uplo and	trans in	the	matrix	object

o implementing	inexpensive	shallow	copy	transposition

o swapping	tiles’	indices	and	setting	trans	appropriately	for	the	underlying	tile	operations



12

Compactness

Templating	targets
o Target::Host

o Target::HostTask

o Target::HostNest

o Target::HostBatch

o Target::Devices

o MAGMA
o magma_sgetrf

o magma_sgetrf_m

o magma_sgetrf_gpu

o magma_sgetrf_mgpu

o SLATE
o slate::getrf

o magma_dgetrf

o magma_dgetrf_m

o magma_dgetrf_gpu

o magma_dgetrf_mgpu

...



exascaleproject.org

o Get	simple	layers	out	of	the	way

o use	Waterfall
o use	Spiral

o Keep	the	complex	layers	compact

o use	OO	design
o use	templating
o use	Agile/XP	development

o Push	complexity	out	of	the	complex	layers	– absorb	in	simple	layers


