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Use of appropriate software engineering (SE) practices is critical for improving the quality,
reliability, maintainability, and sustainability of scientific software. This position paper describes
my work in two fields directly relevant to this workshop.

Software Engineering for Science The discipline of SE focuses on developing (and evaluating)
techniques and tools to assist developers in efficiently building high-quality, maintainable, and sus-
tainable software. Contrary to what many in the scientific community believe or have experienced
in their interactions with software engineers, SE does not always refer a monolithic, process-heavy
software development approach. Many of the more modern SE approaches are lightweight and
agile, characteristics that make them more applicable to scientific software development.

One of the biggest barriers to more widespread application of SE practices in scientific software
development is a mismatch (or perceived mismatch) between traditional SE and the specific needs
of scientific software developers. There are many reasons for this perceived mismatch including: (1)
the lack of a complete understanding of the specific needs of the scientific domain in question, (2)
the lack of tailored SE practices, and (3) the lack of good examples of effectively using SE practices
in scientific software. Regardless of the reason, a scientific developer needs to be convinced of the
value of any SE practice before he or she will allocate any precious time to employing that practice.

To encourage the use of appropriate SE practices, we need close collaborations between software
engineers and developers of scientific software. These collaborations should focus on identifying
specific needs and developing (or tailoring) practices to address those needs. To be successful,
these collaborations require effort and input from both parties. Scientific software developers must
provide information about the specific problems and constraints in their environment and must
be open to trying out new SE practices. Software engineers must be willing to listen to scientific
developers and develop or tailor practices to fit their needs and constraints.

Based on my extensive experience in Software Engineering for Science, including my own case
studies [5, 8, 9, 12, 15, 14] and surveys [6, 7, 13|, as well as a workshop series I co-orgainze
(http://www.SE4Science.org/workshops), I believe that appropriate, lightweight, modern soft-
ware engineering practices can be of great value to the scientific software community.

Increasing the level of participation and quality in Free/Libre, Open Source Software
(FLOSS) Building a vibrant FLOSS community around a software package requires focused
effort. In my previous work, I have studied how the social networks formed through activities like
peer code review affect community building and peer impression formation for virtual teams [1,
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2, 3]. T have also studied the barriers that prevent One-Time Contributors (i.e. those who have
successfully contributed 1 code patch) from continuing with the project [4, 10, 11]. As one of the
topics of interest for this workshop is the development and use of open source software, a better
understanding of the social dynamics and of the methods for attracting more participants are highly
relevant.
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