Software Engineering Research for Exploratory Research
Software

A. Dubey

June 12, 2019

It is well known and understood that software development with some thought given to
design and engineering delivers better results than without. It is also well known that a great
deal of research has gone into understanding processes that improve software development,
and methodologies have been developed based on the outcomes of this research that have
been of tremendous benefit. It is further known that the history of the scientific software
development is littered with cases where no thought was given to either. A confluence of
these three well known facts has given rise to a partially false belief in many quarters that if
only we could bring these methodologies and practices to scientific software development, it
would solve most problems related to its quality. The fundamental reason that this belief is
false is because almost all of software engineering research and methodology development has
focused on commercial software where the features and capabilities of the end product are
largely known. The research and development departments of even large companies such as
Google, BMW, and Cisco have difficulty in fitting the development and lifecycle models that
work excellently in their production departments. Any quality shortcomings in their research
software are protected from manifesting in their products precisely because no research pro-
totype will turn into a product without going through the proper production pipeline. In
scientific software the research prototypes are often used directly as a product, therefore
there is no filtering of quality shortcomings. Therefore, a software engineering system and
development methodology that ensures quality of software all through research and produc-
tion stages is a unique challenge for our community, and therefore requires solutions that are
tailored for our specific needs.

In the development of scientific software, the expertise map of its various components
can be hugely diverse, as also the priorities. Our community has discussed the conflicting
priorities of scientific publications versus software quality in various forums for a while. We
have yet to come to grips with another aspect of priorities; what is used in science pro-
duction by the domain scientist can be a research code for a computational mathematician.
As an example, the shock hydrodynamics and magnetohydrodynamics solvers are the main
workhorses of the FLASH code. Almost all science campaigns use one or the other. How-
ever, for the computational mathematician who developed those algorithms, it is the code
where he exercises his new ideas. So it is in his interest to build in run-time flexibility in
the code so that he can do his own kind of parameter exploration for convergence, stability,
constraints on CFL number etc. This runtime flexibility is at odds with maintainable and



performant code because often the alternatives are exercised very deep in the call stack. The
model of prototyping first and then bringing it into the production code is applicable when
the algorithm is new, or the code being developed can be exercised meaningfully in isolation.
However, in the fifteen year long history of this code unit, there has never been a time when
tweaks were not being done, and many of them needed to be exercised by production level
science applications to be characterized and adopted appropriately.

The example above is only one instance of conflicts in technical priorities which are
every bit as challenging to solve as the sociological ones. It is also a challenge unique to
interdisciplinary research software that computational science requires, and is a research
opportunity for the software engineering community. Several other challenges that present
research opportunities in software engineering are enumerated below.

1. Repository workflow management for software that has most of its components under
continuous research and development.

2. Verification methodology for software meant for exploration where the correct solution
is not know apriori.

3. Software lifecycle where there are major capability changes almost continuously over
time.

4. Software design for interdisciplinary research software which will not respect the en-
capsulation boundaries because of domain demands.

5. Quality control and provenance in a constantly changing environment.

These and other questions can become basis for more meaningful engagement between the
software engineering research community at large and the computational science software
developers. It is my belief that such engagements will also yield insight about management
of research software at the enterprise level.



