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Migrating compiler and programming languages research for HPC into practice has always 
been difficult, due to a number of factors: 

● Compilers are complex software systems, and even standard programming languages 
such as C++ and Fortran continue to evolve.  Therefore, building research compilers that 
can apply to large-scale applications requires that such compiler efforts track language 
changes, support a broad set of applications through their lifetimes, and also 
demonstrate better performance or higher productivity than other available compilers.  

● Vendor-specific compilers tend to produce higher-quality code than open source 
compilers, but they are closed systems for which it is difficult to extend or leverage their 
capability. 

● Open source compilers, and particularly Clang/LLVM which is gaining traction in HPC, 
have gaps in their capability as compared to research and vendor compilers.  

● HPC users are a small market, and therefore, it is difficult to motivate industry to invest in 
compiler technology beyond what is required to demonstrate performance of new 
architectures.  This required compiler technology may be at a lower level of abstraction 
than programmers might desire. 

 
The Exascale Computing Program represents a unique opportunity to invest in compiler 
technology for HPC and migrate the potential performance portability offered by compiler 
technology and programming systems at a time when architectures are changing radically. 
However, is this investment sufficient?  Instead, should we be leveraging where the large 
industry investment in compilers is happening, in compilers for deep learning?  
 
This proposed talk will cover three topics.  First, what are the opportunities for compiler 
technology to ease the performance portability challenges of moving to exascale architectures? 
In particular, we discuss a layered approach that is gaining traction, where a computation’s 
specification is separated from its mapping to hardware, and models or autotuning are used to 
derive the architecture-specific mapping.  
 
Next, we plan to discuss two paths for building compiler technology for HPC in open source 
infrastructures.  The first path is to continue to develop within the Clang/LLVM infrastructure, as 
is already a part of the ECP portfolio, including OpenMP and OpenACC support, parallel 
intermediate representations, loop transformations, a Fortran frontend, just-in-time compilation 
and better C++ support.  This is a pretty extensive list, and the efforts will not be completed by 



the end of the ECP program.  Nevertheless, it is a collection of support that would have benefits 
well beyond the DOE community, and therefore it seems likely that these efforts can be done in 
partnership with others from the Clang/LLVM community. 
 
A second path is to leverage extensive investments in compilers for deep learning applications. 
Currently, companies including Google, Facebook and Amazon are ramping up large compiler 
groups to address the needs of deep learning.  If one looks closely at the code implementing a 
neural network, it has abundant data parallelism and data reuse.  It has reasonably high 
arithmetic intensity, but moves significant data through the memory hierarchy that must be 
carefully managed.  Target architectures include not just high-end systems, but also desktop 
and handheld devices, and therefore, the implementation and even the computation must be 
tailored to the target architecture.  There are also many different frontends that have emerged 
that should target a common intermediate representation.  To solve scalable deep learning 
problems requires a distributed computing solution.   In fact, the challenges for deep learning 
compilers have significant overlap with what is needed for the HPC community. 
 
Among the efforts focused on deep learning compilers, of particular interest is Google’s recent 
introduction of the Multi-Level Intermediate Representation, or MLIR.  MLIR is part of the Tensor 
Flow framework, but has roots in its leadership to LLVM, as well as a capability to lower MLIR to 
LLVM.   A key idea in MLIR is a set of higher-level abstractions (e.g., tensors) that permit MLIR 
to perform higher-level optimizations more naturally than at the C-like IR abstractions offered in 
LLVM.  Specifically, MLIR is a better representation to reason about array-based computations 
and parallelism than LLVM.  MLIR is new, and therefore, does not have the ecosystem of 
Clang/LLVM.  Most notably, it does not have a C/C++/Fortran frontend, and may not represent 
all computations of interest to the HPC community.  Therefore, it is not a replacement for the 
Clang/LLVM infrastructure, but there is potential to use it initially in domain-specific tools with an 
eye towards evolving to support high-level optimization. 
  
For either Clang/LLVM or MLIR, the diversity of exascale architectures will force the HPC 
community to address performance portability and improvements in open source compiler 
technology.   Engaging a broader community by partnering with industry and other HPC 
stakeholders may be the only way to remove gaps in open source compilers as compared to 
state of the art, and move technology forward towards performance portable solutions.  A final 
topic for the proposed talk is to discuss a framework for building this community. 


