
From Research Prototype to Production Software:
The Lessons of the SLATE Project

2019 Collegeville Workshop on Sustainable Scientific Software (CW3S19)
St. John’s University, Collegeville, MN, July 22-24, 2019

Jakub Kurzak Mark Gates Ali Charara Jack Dongarra

One of the main questions of scienti�c so�ware development is how to produce high-quality
code while conducting research and heavy prototyping. The So�ware for Linear Algebra Tar-
geting Exascale (SLATE) project is a perfect example of a so�ware package that had to start as a
research prototype and is gradually evolving toward production-quality code, with the �nal goal
of matching or outmatching the robustness of its venerable ancestors, LAPACK and ScaLAPACK.

Did ScaLAPACK really need a replacement?

Although this e�ort is unprecedented within the Exascale Computing Project (ECP), develop-
ment of a ScaLAPACK replacement from the ground up was inevitable, due to the fact that
ScaLAPACK was designed in the early 90s. Speci�cally, is was created as a response to the rise
of distributed-memory systems and the message-passing paradigm, represented by the Paral-
lel Virtual Machine (PVM) and the Message Passing Interface (MPI) standards. The main de-
sign principle of ScaLAPACK was the preservation of the algorithmic layer of LAPACK with its
revered numerical properties. The main innovation, and the cornerstone of its architecture,
was the 2D block-cyclic (2DBC) matrix layout, providing load balancing and asymptotic scal-
ing properties. Unfortunately, an array of design choices doom ScaLAPACK as a contender for
exascale:

Implementation Language: The top, algorithmic layer of ScaLAPACK is largely inherited from
LAPACK and, for the most part, is implemented in FORTRAN 77. This has a profound
impact on many design choices in the package.

Fork–Join Execution: ScaLAPACK follows the fork-and-join programming model, with paral-
lelism expressed mostly in the layer of Parallel Basic Linear Algebra Subprograms (PBLAS),
and heavy reliance on blocking, collective MPI operations. On modern systems
ScaLAPACK is punished harshly by network latencies and Amdahl’s sections.

Hardcoded Memory Layout: The 2D block-cyclic layout is hardwired into ScaLAPACK. It only
allows for uniform distribution of the matrix to a P ×Q process grid using a �xed blocking
factor NB. Access to submatrices requires the use of stride, which adversely a�ects caches
and complicates copies. Also hardwired is column-major storage, which can obliterate the
performance of certain operations on both CPUs and GPUs. And �nally, the 2DBC layout
is not easily convertible to other layouts without making a copy of the data.

Extremely Memory-Conservative Yet Wasteful: ScaLAPACK takes the stance of not allocating
internally any substantial amount of memory. All necessary workspace memory has to
be allocated by the user and ScaLAPACK is designed to cope with insu�cient amounts by
sacri�cing performance. Also, ScaLAPACK implements in-place matrix transformations,
even when out-of-place alternatives exist and provide increased parallelism and poten-
tial for much higher performance. On the other hand, ScaLAPACK stores triangular and
symmetric matrices as full matrices, essentially wasting half of the storage.

It is basically impossible to consider GPU acceleration within the design constraints of
ScaLAPACK. The futility of such attempts is easily demonstrated by the exercise of combin-
ing ScaLAPACK with multithreaded BLAS, which is known to produce inferior performance
compared to ScaLAPACK running with one MPI process per core.

1



Why does SLATE have to be an evolving prototype?

SLATE had to start as a prototype because it is a radical departure from the old wisdom of
ScaLAPACK, most notably abandoning the legacy 2DBC matrix layout in favor of tile layout, and
abandoning the reliance on the standard BLAS in favor of batched BLAS. Although by now the
architecture has solidi�ed to some extent, the development is still marked by intensive research
and heavy prototyping. This is mainly due to the �uid condition of the underlying so�ware
stack, as outlined by the following points:

No unified model for programming distributed-memory, multi-GPU systems: Some solutions
dri� towards the cache model, an example being NVIDIA’s managed memory. Some so-
lutions dri� towards the distributed-memory model, an example being the NVIDIA Col-
lective Communications (NCCL) library. Automated data�ow schedulers, such as PaRSEC,
Legion, or StarPU are still considered research prototypes, and MPI+OpenMP+X seems to
be the prevailing model for the time being, X being either NVIDIA CUDA or AMD HIP.

No standardized solution for node-level memory coherency: When considering node-level
memory consistency, there is a couple of alternatives: OpenMP/OpenACC compiler
directives, OpenMP/OpenACC runtime APIs, CUDA runtime API, and CUDA managed
memory. NVIDIA’s managed memory is the closest it comes to a complete solution. It
o�ers fully automated coherency protocol with support for replication and prefetching.
One major problem is that it is page-based, which is too big a granularity in many cases.
Another is that it is proprietary, and in particular not currently supported by AMD’s
hardware.

No standardized solution for programming GPU kernels: OpenCL basically faded away, and
OpenACC is generally not considered a performance champion for GPU kernel devel-
opment. NVIDIA’s CUDA is the go-to solution for the development of high-performance
kernels, and AMD’s HIP is basically identical to CUDA. Still, neither of them has the sta-
tus of an actual standard, and it would be a bit of a stretch to call any of them a de facto
standard just yet.

OpenMP tasking does not mix well with MPI: To start with, MPI does not really mix well with
multithreading. The MPI standard introduced thread safety fairly recently, and it usu-
ally comes at the cost of performance. What’s even worse is that in general MPI can-
not be safely mixed with OpenMP tasking. Extreme caution and careful workarounds are
necessary—until MPI supports the notion of the MPI_TASK_MULTIPLEmode of operation [4].

OpenMP tasking does not mix well with GPU APIs. OpenMP tasks are asynchronous by def-
inition. For multi-GPU programming it makes perfect sense to place GPU calls inside
OpenMP tasks. Unfortunately, GPU calls are not asynchronous by default and require the
use of CUDA streams. We end up using two di�erent (de)synchronization mechanisms
that do not know about each other. Higher levels of parallelism demand more streams. At
some point juggling multiple streams becomes tedious and error-prone.

Development of batched BLAS is lagging. Unlike ScaLAPACK, which relies heavily on the
standard BLAS, SLATE relies on the batched BLAS for executing its most performance-
critical operations. Unfortunately, standardization of batched BLAS is not gaining much
traction. Also, the ongoing e�orts mostly consider the C API, while a C++ API is required
in SLATE. Very little is available in terms of actual high-performance implementations—a
handful of routines from NVIDIA and virtually nothing from AMD.

Consider that ScaLAPACK developers already had a very well established BLAS standard at
their disposal, and basically had to worry about one emerging programming parading—message
passing. SLATE is being developed while the MPI standard is evolving, the OpenMP standard is
evolving even faster, the only viable GPU programming systems are proprietary, and the batched
BLAS standardization is lagging. Under such conditions, SLATE development relies on educated
guesses about the technology trends and taking bets on some technologies materializing in the
future.

2



How is SLATE sustaining the transformation?

C++

The role of the programming language is not to be understated. It is a �rm belief of the develop-
ment team that the project would not succeed—given its budget and manpower—if, for example,
the C language was chosen for the implementation, rather than C++. It is hard to imagine the de-
velopment of SLATE without the bene�t of inheritance, templating, standard library containers,
etc. Speci�cally, C++ is the main facilitator of SLATE’s compactness.

Compactness

One of the main risk-mitigating solutions in SLATE is code compactness, which minimizes the
volume of code potentially exposed to changes in the underlying programming paradigms,
MPI and OpenMP. SLATE is incredibly compact compared to its predecessors implemented
in FORTRAN (LAPACK, ScaLAPACK) and C (PLASMA, MAGMA). The compactness of SLATE
is mostly due to the combination of three di�erent techniques:

Templating of Precisions: SLATE handles multiple precisions by C++ templating, so there is
only one precision-independent version of the code, which is then instantiated for the
desired precisions. Operations are de�ned to apply consistently across all precisions.
SLATE’s BLAS++ component provides overloaded, precision-independent wrappers for
all the underlying node-level BLAS, which SLATE’s PBLAS are built on top of. Currently,
the SLATE library has explicit instantiations of the four main data types: float, double,
std::complex<float>, and std::complex<double>. The SLATE code should be able to ac-
commodate other data types, such as half, double-double, or quad precision, given appro-
priate underlying node-level BLAS.

Templating of Execution Targets: Parallelism is expressed in SLATE’s computational routines.
Computational routines solve a sub-problem, such as computing an LU factorization
(getrf), or solving a linear system given an LU factorization (getrs). In SLATE, these are
templated on target (CPU or device), with the code typically independent of the target.
The user can choose among various target implementations. In the case of accelerated
execution (Target::Devices), the updates are executed as calls to batch gemm. In the case of
multicore execution, the updates can be executed as:

• a set of OpenMP tasks (Target::HostTask),

• a nested parallel for loop (Target::HostNest), or

• a call to batch gemm (Target::HostBatch).

Handling of side, uplo, trans: The classical BLAS take parameters such as side, uplo, trans
(named “op” in SLATE), and diag to specify operation variants. Traditionally, this has
meant that implementations have numerous cases. The reference BLAS has nine cases
in zgemm and eight cases in ztrmm (times several sub-cases). ScaLAPACK and the PLASMA
likewise have eight cases in ztrmm. In contrast, by storing both uplo and op within the
matrix object itself, and supporting inexpensive shallow copy transposition, SLATE can
implement just one or two cases and map all the other cases to that implementation
by appropriate transpositions. For instance, SLATE only implements one case for gemm
(NoTrans, NoTrans) and handles all the other cases by swapping indices of tiles and setting
trans appropriately for the underlying tile operations.

To illustrate the compactness of SLATE, consider the Cholesky factorization computational
routine (potrf), used by the Cholesky driver. SLATE’s potrf routine is approximately the
same length as the LAPACK dpotrf code, and roughly half the length of the ScaLAPACK and
MAGMA code (all excluding comments). Yet SLATE’s code handles all precisions, multiple tar-
gets, distributed-memory and shared-memory parallelism, a lookahead to overlap communi-
cation and computation, and GPU acceleration. Of course, there is signi�cant code in lower
levels, but this demonstrates that writing driver and computational routines can be simpli�ed
by delegating code complexity to lower-level abstractions.

3



Layering

One of the main tools of so�ware engineering is creating so�ware layers with clearly de�ned
responsibilities and interfaces. Over the course of SLATE’s development, we also recognized
the fact that di�erent development models apply to di�erent layers, and that the simple models
need to be used when applicable.

Waterfall Where Applicable: SLATE has layers where the waterfall development model can be
applied in the textbook manner. It is important to recognize that when such an opportu-
nity presents itself it needs to be taken advantage of. In SLATE, such was the case with the
BLAS++ and LAPACK++ components. First, a document was dra�ed describing both the
requirements and the design [3]. Then implementation followed and was accompanied by
the development of a test suite for veri�cation. And currently, the layers are in a low-e�ort
maintenance phase.

Spiral Where Applicable: SLATE also has layers which allow for a textbook application of the
spiral model. The batched BLAS++ (BBLAS++) is the prime example. Initially, BBLAS++
went though the phase of requirements and design [1], then implementation, then valida-
tion [2]. Since then, however, it has been going through incremental stages of incorporat-
ing new features, in order to gradually absorb more and more complexity from the higher
layers.

Agile/XP Where Necessary: Finally, there are layers in SLATE, which are in constant �ux, due
to ever-changing requirements. One example is the MOSI-inspired, node-level memory
coherency protocol. Because of the inherent complexity of designing such a mechanism,
the initial implementation only supported the absolute minimum functionality. Then it
went through a rapid sequence of redesign and reimplementation stages, as new compu-
tational routines introduced an array of new requirements.

Main Points and Takeaways

• ScaLAPACK reached the end of its life cycle and had to be replaced.
• Exascale programming frameworks/paradigms are in a state of �ux.
• The use of a modern programming language facilitates good so�ware engineering.
• It is good to minimize the volume of code exposed to changing requirements.
• Di�erent development methodologies apply to di�erent so�ware layers.
• Classic development models (waterfall, spiral) are still applicable.
• Agile/XP development is the response to fast-changing requirements.

References

[1] A. Abdelfattah, K. Arturov, C. Cecka, J. Dongarra, C. Freitag, M. Gates, A. Haidar, J. Kurzak,
P. Luszczek, S. Tomov, and P. Wu. SLATE working note 4: C++ API for batch BLAS. Technical
Report ICL-UT-17-12, Innovative Computing Laboratory, University of Tennessee, Decem-
ber 2017. revision 01-2018.

[2] A. Abdelfattah, M. Gates, J. Kurzak, P. Luszczek, and J. Dongarra. SLATE working note 7:
Implementation of the c++ API for batch BLAS. Technical Report ICL-UT-XX-XX, Innovative
Computing Laboratory, University of Tennessee, June 2018. revision 06-2018.

[3] M. Gates, P. Luszczek, A. Abdelfattah, J. Kurzak, J. Dongarra, K. Arturov, C. Cecka, and C. Fre-
itag. SLATE working note 2: C++ API for BLAS and LAPACK. Technical Report ICL-UT-17-03,
Innovative Computing Laboratory, University of Tennessee, June 2017. revision 03-2018.

[4] K. Sala, J. Bellón, P. Farré, X. Teruel, J. M. Perez, A. J. Peña, D. Holmes, V. Beltran, and
J. Labarta. Improving the interoperability between mpi and task-based programming mod-
els. In Proceedings of the 25th European MPI Users’ Group Meeting, page 6. ACM, 2018.

4


