
Random Thoughts on Software Sustainability

Vadim Dyadechko

Disclaimer

Some statements below may look over-simplified or provocative; it was done on pur-
pose to make the message unambiguous and spark discussion. I am well aware that
the right answer to most real life questions is ”it depends”. Unfortunately, this answer
does not help us to stay focused and deliver products on time and on budget.

Human factor

Human brains are not wired to handle complex (software) systems. Unfortunately, we
are not always aware of our own limitations. We constantly expand our capabilities
by improving the code structure and automating development processes, but our ap-
petites grow faster than our powers. We tend to

• misunderstand the nature of software

• have unrealistic expectations about software products

• be over-optimistic about everything, systematically under-estimating

– the complexity of code

– the development/testing/integration/operational cost

Accepting our fallacies and controlling them is the first step towards sustainable soft-
ware development.

Managing expectations

We don’t talk about hardware sustainability because

• hardware is tangible

• hardware is final (static)

• hardware is fit for purpose

• hardware has well defined lifetime

• hardware has well defined interfaces/protocols/tolerances (operational environ-
ment)

• hardware quality is taken very seriously (prohibitive cost of failure)

Hardware is quite rigid, we accept it and deal with it, no complains.

Software, on the other hand, is perceived/expected to

• be intangible

• be highly customizable/flexible

• accommodate new features, embrace new types of hardware

• last over a long period of time

1



• be deployed on a wide range of platforms

• be inter-operable with other pieces of software

• include bugs (bugs are tolerated, eventually fixed)

Unfortunately a lot of these expectations are over-inflated; here’s the reality check:

• most software designs are surprisingly rigid

• any bit of customization increases overall complexity (snowball effect)

• there is a natural cap on how large a reliable system can be

• portability complicates source code, build framework, multiplies cost of testing

• inter-operability requires a lot of fitting/testing

• code readability/maintainability has low priority with constant time pressure

To a large extent, the software sustainability problem is a problem of our unrealistic
expectations. By being honest with ourselves and embracing the fact that software
should be treated as a rigid tangible object, we can noticeably improve our chances of
success. As well as the budget of development/operations. There is no free lunch.

Keep It Simple

Each product/system is only as robust as it is simple, (non-essential) flexibility is your
enemy #1:

• learn to be principled about requirements that compromise code simplicity for
incremental benefits

• eliminate (minimize) custom config files/options, introduce simple and transpar-
ent set of rules instead

The key to success is self-imposed sharp focus:

• no multi-platform support (Linux only, no Mac, no Windows)

• stick to one compiler suite: GCC, Clang, ICC – your call

• stick to mainstream hardware (multi-core CPUs)

• stay away from multi-threading (MPI only)

• stay away from high-maintenance 3rd-party dependencies (Boost)

• resist the temptation of writing a general-purpose library, it is significantly harder
than writing an app

• stay conservative in terms of tools/standards (make, c++11, perl5, python2.7)

• explicitly limit your support liabilities (i.e. the lifetime of eachmaintenance branch)

2



Moving target

A fair share of software development effort falls into a category of contingency events
only because both code and operational environment are treated as static rather than
evolving objects. One cannot write a piece of code and leave it alone; it will eventually
become obsolete/unusable. Software requires constant support effort, which is not
popular:

• perceived to be secondary to the development

• viewed as a hard-to-measure damage control overhead

• creating new bugs is more fun than eliminating the old ones

Refactoring of production code is disruptive, requires strong political will, and in many
places is considered to be the last-resort measure. The post-release support and refac-
toring toll project resources and feed the atmosphere of delays and over-budgeting un-
less they are embraced as integral parts of development process and planned for/executed
accordingly.

Modularity

The standard ”divide-and-conquer” approach towards managing complexity faces se-
rious challenges in HPC world: it is impossible to decouple algorithms from target
hardware. The performance race incentivizes monolithic vertical designs, the tradi-
tional software stacks with portable body and lean hardware-specific base are more
complex and/or less competitive.

The legacy codes have complex history, may not be well structured, may rely on
suboptimal numerics. Beyond that, it is not uncommon for the subject area knowl-
edge, discretization, and solvers to be unnecessarily entangled (”physics-based precon-
ditioner”, ”finite-element solver”, ”sequential formulation”). Imposing clean overall
structure, separating the concepts, and revisiting math are frequently more important
than propping code for new type of hardware.

Other thoughts

• Resist the hype of cutting-edge technologies, ”sustainable” is the opposite of
”fashionable” and ”experimental”.

• The fit between existing apps/algorithms and new hardware should be an im-
portant factor in a hardware purchase decision. The advertised specs look less
appealing in the prospect of substantial porting overhead and low hardware uti-
lization.

• Involvement of developers in daily production operations has enormous positive
impact on the software quality/usability. The best pieces of softwarewere created
for personal use (Unix, C, Perl, TeX, Git).

• Static user documentation is mostly dead: searchable wikis/forums proved to be
low-maintenance fit-for-purpose knowledge bases.

3


